On the spectral zeta function for the noncommutative harmonic oscillator

被引:11
|
作者
Ichinose, Takashi [1 ]
Wakayama, Masato
机构
[1] Kanazawa Univ, Fac Sci, Dept Math, Kanazawa, Ishikawa 9201192, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8128581, Japan
基金
日本学术振兴会;
关键词
spectral zeta functions; Riemann's zeta function; harmonic oscillator; noncommutative; harmonic oscillators; Weyl's law; Bernoulli's number;
D O I
10.1016/S0034-4877(07)80077-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral zeta function for the so-called noncommutative harmonic oscillator is able to be meromorphically extended to the whole complex plane, having only one simple pole at the same point s = 1 where Riemann's zeta function (s) has, and possesses a trivial zero at each nonpositive even integer. The essential part of its proof is sketched. A new result is also given on the lower and upper bounds of the eigenvalues of the noncommutative harmonic oscillator.
引用
收藏
页码:421 / 432
页数:12
相关论文
共 50 条
  • [31] Entanglement induced by noncommutativity: anisotropic harmonic oscillator in noncommutative space
    Abhishek Muhuri
    Debdeep Sinha
    Subir Ghosh
    The European Physical Journal Plus, 136
  • [32] Entanglement induced by noncommutativity: anisotropic harmonic oscillator in noncommutative space
    Muhuri, Abhishek
    Sinha, Debdeep
    Ghosh, Subir
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [33] Isotropic representation of the noncommutative 2D harmonic oscillator
    Smailagic, A
    Spallucci, E
    PHYSICAL REVIEW D, 2002, 65 (10)
  • [34] The Noncommutative Harmonic Oscillator Based on Symplectic Representation of Galilei Group
    R. G. G. Amorim
    S. C. Ulhoa
    A. E. Santana
    Brazilian Journal of Physics, 2013, 43 : 78 - 85
  • [35] HARMONIC SUMS AND THE ZETA-FUNCTION
    GEORGHIOU, C
    PHILIPPOU, AN
    FIBONACCI QUARTERLY, 1983, 21 (01): : 29 - 36
  • [36] A NUMERICAL APPROACH TO HARMONIC NONCOMMUTATIVE SPECTRAL FIELD THEORY
    Spisso, Bernardino
    Wulkenhaar, Raimar
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (14):
  • [37] Harmonic oscillator with a δ-function potential
    Patil, S. H.
    EUROPEAN JOURNAL OF PHYSICS, 2006, 27 (04) : 899 - 911
  • [38] Trace formula in noncommutative geometry and the zeros of the Riemann zeta function
    Cormes A.
    Selecta Mathematica, 1999, 5 (1) : 29 - 106
  • [39] The Harmonic Oscillator Influenced by Gravitational Wave in Noncommutative Quantum Phase Space
    Rehimhaji Yakup
    Sayipjamal Dulat
    Kang Li
    Mamatabdulla Hekim
    International Journal of Theoretical Physics, 2014, 53 : 1404 - 1414
  • [40] Exact Solutions of a Damped Harmonic Oscillator in a Time Dependent Noncommutative Space
    Dutta, Manjari
    Ganguly, Shreemoyee
    Gangopadhyay, Sunandan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (12) : 3852 - 3875