On the spectral zeta function for the noncommutative harmonic oscillator

被引:11
|
作者
Ichinose, Takashi [1 ]
Wakayama, Masato
机构
[1] Kanazawa Univ, Fac Sci, Dept Math, Kanazawa, Ishikawa 9201192, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8128581, Japan
基金
日本学术振兴会;
关键词
spectral zeta functions; Riemann's zeta function; harmonic oscillator; noncommutative; harmonic oscillators; Weyl's law; Bernoulli's number;
D O I
10.1016/S0034-4877(07)80077-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral zeta function for the so-called noncommutative harmonic oscillator is able to be meromorphically extended to the whole complex plane, having only one simple pole at the same point s = 1 where Riemann's zeta function (s) has, and possesses a trivial zero at each nonpositive even integer. The essential part of its proof is sketched. A new result is also given on the lower and upper bounds of the eigenvalues of the noncommutative harmonic oscillator.
引用
收藏
页码:421 / 432
页数:12
相关论文
共 50 条