Upper bounds for strictly concave distortion risk measures on moment spaces

被引:15
|
作者
Cornilly, D. [1 ,2 ]
Rueschendorf, L. [3 ]
Vanduffel, S. [4 ]
机构
[1] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium
[2] Katholieke Univ Leuven, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
[3] Univ Freiburg, Eckerstr 1, D-79104 Freiburg, Germany
[4] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium
来源
关键词
Value-at-Risk (vaR); Coherent risk measure; Model uncertainty; Cantelli bound; Distortion function; VALUE-AT-RISK; MODEL UNCERTAINTY; INFORMATION; DEPENDENCE; DISTRIBUTIONS; AGGREGATION; ALLOCATION; SUMS;
D O I
10.1016/j.insmatheco.2018.07.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
The study of worst-case scenarios for risk measures (e.g., Value-at-Risk) when the underlying risk (or portfolio of risks) is not completely specified is a central topic in the literature on robust risk measurement. In this paper, we tackle the open problem of deriving upper bounds for strictly concave distortion risk measures on moment spaces. Building on early results of Rustagi (1957, 1976), we show that in general this problem can be reduced to a parametric optimization problem. We completely specify the sharp upper bound (and corresponding maximizing distribution function) when the first moment and any other higher moment are fixed. Specifically, in the case of a fixed mean and variance, we generalize the Cantelli bound for (Tail) Value-at-Risk in that we express the sharp upper bound for a strictly concave distorted expectation as a weighted sum of the mean and standard deviation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 50 条
  • [31] UPPER POROUS MEASURES ON METRIC SPACES
    Suomala, Ville
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (03) : 967 - 980
  • [32] Spaces of Measures and Numbers in Upper Mesopotamia
    Chambon, Gregory
    CONSTITUENT, CONFEDERATE, AND CONQUERED SPACE: THE EMERGENCE OF THE MITTANI STATE, 2014, 17 : 247 - 255
  • [33] Systemic risk: Conditional distortion risk measures
    Dhaene, Jan
    Laeven, Roger J. A.
    Zhang, Yiying
    INSURANCE MATHEMATICS & ECONOMICS, 2022, 102 : 126 - 145
  • [34] Lower bounds on the distortion of embedding finite metric spaces in graphs
    Rabinovich, Y
    Raz, R
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (01) : 79 - 94
  • [35] Lower Bounds on the Distortion of Embedding Finite Metric Spaces in Graphs
    Y. Rabinovich
    R. Raz
    Discrete & Computational Geometry, 1998, 19 : 79 - 94
  • [36] Embeddings of C(K) spaces into C(S, X) spaces with distortion strictly less than 3
    Candido, Leandro
    Galego, Eloi Medina
    FUNDAMENTA MATHEMATICAE, 2013, 220 (01) : 83 - 92
  • [37] UPPER AND LOWER BOUNDS OF QUARTIC CENTRIFUGAL-DISTORTION CONSTANTS
    ALIEV, MR
    WATSON, JKG
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1979, 74 (02) : 282 - 293
  • [38] Upper bounds on the channel distortion of combined TCQ/CPM systems
    Lin, ZH
    Aulin, T
    ICC 2005: IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5, 2005, : 505 - 509
  • [39] Strictly monotone sequences of lower and upper bounds on Perron values and their combinatorial applications
    Kim, Sooyeong
    Song, Minho
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (02): : 322 - 350
  • [40] Remarks on quantiles and distortion risk measures
    Jan Dhaene
    Alexander Kukush
    Daniël Linders
    Qihe Tang
    European Actuarial Journal, 2012, 2 (2) : 319 - 328