Strictly monotone sequences of lower and upper bounds on Perron values and their combinatorial applications

被引:0
|
作者
Kim, Sooyeong [1 ]
Song, Minho [2 ]
机构
[1] Univ Pisa, Dept Energy Syst Terr & Construct Engn, Pisa, Italy
[2] Sungkyunkwan Univ, Appl Algebra & Optimizat Res Ctr, Suwon 16419, South Korea
来源
LINEAR & MULTILINEAR ALGEBRA | 2025年 / 73卷 / 02期
基金
新加坡国家研究基金会;
关键词
Nonnegative matrix; Perron value; upper and lower bounds; bottleneck matrix; log-concavity; log-convexity; LOG-CONCAVE;
D O I
10.1080/03081087.2024.2341167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present monotone sequences of lower and upper bounds on the Perron value of a nonnegative matrix, and we study their strict monotonicity. Using those sequences, we provide two combinatorial applications. One is to improve bounds on Perron values of rooted trees in combinatorial settings, in order to find characteristic sets of trees. The other is to generate log-concave and log-convex sequences through the monotone sequences.
引用
收藏
页码:322 / 350
页数:29
相关论文
共 38 条