Upper bounds for strictly concave distortion risk measures on moment spaces

被引:15
|
作者
Cornilly, D. [1 ,2 ]
Rueschendorf, L. [3 ]
Vanduffel, S. [4 ]
机构
[1] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium
[2] Katholieke Univ Leuven, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
[3] Univ Freiburg, Eckerstr 1, D-79104 Freiburg, Germany
[4] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium
来源
关键词
Value-at-Risk (vaR); Coherent risk measure; Model uncertainty; Cantelli bound; Distortion function; VALUE-AT-RISK; MODEL UNCERTAINTY; INFORMATION; DEPENDENCE; DISTRIBUTIONS; AGGREGATION; ALLOCATION; SUMS;
D O I
10.1016/j.insmatheco.2018.07.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
The study of worst-case scenarios for risk measures (e.g., Value-at-Risk) when the underlying risk (or portfolio of risks) is not completely specified is a central topic in the literature on robust risk measurement. In this paper, we tackle the open problem of deriving upper bounds for strictly concave distortion risk measures on moment spaces. Building on early results of Rustagi (1957, 1976), we show that in general this problem can be reduced to a parametric optimization problem. We completely specify the sharp upper bound (and corresponding maximizing distribution function) when the first moment and any other higher moment are fixed. Specifically, in the case of a fixed mean and variance, we generalize the Cantelli bound for (Tail) Value-at-Risk in that we express the sharp upper bound for a strictly concave distorted expectation as a weighted sum of the mean and standard deviation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 50 条
  • [41] Computing Sensitivities for Distortion Risk Measures
    Glynn, Peter W.
    Peng, Yijie
    Fu, Michael C.
    Hu, Jian-Qiang
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (04) : 1520 - 1532
  • [42] On relations between a Priori bounds for measures on configuration spaces
    Kondratiev, Y
    Kuna, T
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (02) : 195 - 213
  • [43] Distortion risk measures in portfolio optimization
    Kopa, Milos
    Zelman, Juraj
    39TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS (MME 2021), 2021, : 255 - 260
  • [44] Remarks on quantiles and distortion risk measures
    Dhaene, Jan
    Kukush, Alexander
    Linders, Daniel
    Tang, Qihe
    EUROPEAN ACTUARIAL JOURNAL, 2012, 2 (02) : 319 - 328
  • [45] COMPETITIVE EQUILIBRIA WITH DISTORTION RISK MEASURES
    Boonen, Tim J.
    ASTIN BULLETIN, 2015, 45 (03): : 703 - 728
  • [46] Distortion Risk Measures in Portfolio Optimization
    Sereda, Ekaterina N.
    Bronshtein, Efim M.
    Rachev, Svetozar T.
    Fabozzi, Frank J.
    Sun, Wei
    Stoyanov, Stoyan V.
    HANDBOOK OF PORTFOLIO CONSTRUCTION: CONTEMPORARY APPLICATIONS OF MARKOWITZ TECHNIQUE, 2010, : 649 - +
  • [47] Properties of distortion risk measures.
    Balbás, A
    Garrido, J
    Silvia, M
    INSURANCE MATHEMATICS & ECONOMICS, 2005, 37 (02): : 389 - 390
  • [48] Multinomial backtesting of distortion risk measures
    Bettels, Soeren
    Kim, Sojung
    Weber, Stefan
    INSURANCE MATHEMATICS & ECONOMICS, 2024, 119 : 130 - 145
  • [49] KLS-type isoperimetric bounds for log-concave probability measures
    Bobkov, Sergey G.
    Cordero-Erausquin, Dario
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) : 681 - 695
  • [50] KLS-type isoperimetric bounds for log-concave probability measures
    Sergey G. Bobkov
    Dario Cordero-Erausquin
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 681 - 695