Group-sparse regression using the covariance fitting criterion

被引:14
|
作者
Kronvall, Ted [1 ]
Adalbjornsson, Stefan Ingi [1 ]
Nadig, Santhosh [1 ]
Jakobsson, Andreas [1 ]
机构
[1] Lund Univ, Dept Math Stat, Lund, Sweden
基金
瑞典研究理事会;
关键词
Covariance fitting; SPICE; Group sparsity; Group-LASSO; Hyperparameter-free; Convex optimization; VARIABLE SELECTION; SIGNAL RECONSTRUCTION; PARAMETER-ESTIMATION; RECOVERY; REPRESENTATIONS; DECOMPOSITION; ESTIMATOR; SPICE;
D O I
10.1016/j.sigpro.2017.03.025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we present a novel formulation for efficient estimation of group-sparse regression problems. By relaxing a covariance fitting criteria commonly used in array signal processing, we derive a generalization of the recent SPICE method for grouped variables. Such a formulation circumvents cumbersome model order estimation, while being inherently hyperparameter-free. We derive an implementation which iteratively decomposes into a series of convex optimization problems, each being solvable in closed-form. Furthermore, we show the connection between the proposed estimator and the class of LASSO-type estimators, where a dictionary-dependent regularization level is inherently set by the covariance fitting criteria. We also show how the proposed estimator may be used to form group-sparse estimates for sparse groups, as well as validating its robustness against coherency in the dictionary, i.e., the case of overlapping dictionary groups. Numerical results show preferable estimation performance, on par with a group-LASSO bestowed with oracle regularization, and well exceeding comparable greedy estimation methods. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:116 / 130
页数:15
相关论文
共 50 条
  • [21] Integrative multi-view regression: Bridging group-sparse and low-rank models
    Li, Gen
    Liu, Xiaokang
    Chen, Kun
    BIOMETRICS, 2019, 75 (02) : 593 - 602
  • [22] Group-Sparse Channel Estimation using Bayesian Matching Pursuit for OFDM Systems
    Liu, Yi
    Mei, Wenbo
    Du, Huiqian
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2015, 9 (02): : 583 - 599
  • [23] Sparse covariance fitting for direction of arrival estimation
    Blanco, Luis
    Najar, Montse
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2012,
  • [24] Sparse covariance fitting for direction of arrival estimation
    Luis Blanco
    Montse Nájar
    EURASIP Journal on Advances in Signal Processing, 2012
  • [25] Sparse spectrum fitting algorithm using signal covariance matrix reconstruction and weighted sparse constraint
    Wang, Hao
    Zhang, Hong
    Ma, Qiming
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2022, 33 (03) : 807 - 817
  • [26] Sparse spectrum fitting algorithm using signal covariance matrix reconstruction and weighted sparse constraint
    Hao Wang
    Hong Zhang
    Qiming Ma
    Multidimensional Systems and Signal Processing, 2022, 33 : 807 - 817
  • [27] Informed Group-Sparse Representation for Singing Voice Separation
    Chan, Tak-Shing T.
    Yang, Yi-Hsuan
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (02) : 156 - 160
  • [28] Tractability of Interpretability via Selection of Group-Sparse Models
    Bhan, Nirav
    Baldassaffe, Luca
    Cevher, Volkan
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 632 - 632
  • [29] Tractability of Interpretability via Selection of Group-Sparse Models
    Bhan, Nirav
    Baldassarre, Luca
    Cevher, Volkan
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1037 - 1041
  • [30] Sparse Multivariate Regression With Covariance Estimation
    Rothman, Adam J.
    Levina, Elizaveta
    Zhu, Ji
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) : 947 - 962