Group-sparse regression using the covariance fitting criterion

被引:14
|
作者
Kronvall, Ted [1 ]
Adalbjornsson, Stefan Ingi [1 ]
Nadig, Santhosh [1 ]
Jakobsson, Andreas [1 ]
机构
[1] Lund Univ, Dept Math Stat, Lund, Sweden
基金
瑞典研究理事会;
关键词
Covariance fitting; SPICE; Group sparsity; Group-LASSO; Hyperparameter-free; Convex optimization; VARIABLE SELECTION; SIGNAL RECONSTRUCTION; PARAMETER-ESTIMATION; RECOVERY; REPRESENTATIONS; DECOMPOSITION; ESTIMATOR; SPICE;
D O I
10.1016/j.sigpro.2017.03.025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we present a novel formulation for efficient estimation of group-sparse regression problems. By relaxing a covariance fitting criteria commonly used in array signal processing, we derive a generalization of the recent SPICE method for grouped variables. Such a formulation circumvents cumbersome model order estimation, while being inherently hyperparameter-free. We derive an implementation which iteratively decomposes into a series of convex optimization problems, each being solvable in closed-form. Furthermore, we show the connection between the proposed estimator and the class of LASSO-type estimators, where a dictionary-dependent regularization level is inherently set by the covariance fitting criteria. We also show how the proposed estimator may be used to form group-sparse estimates for sparse groups, as well as validating its robustness against coherency in the dictionary, i.e., the case of overlapping dictionary groups. Numerical results show preferable estimation performance, on par with a group-LASSO bestowed with oracle regularization, and well exceeding comparable greedy estimation methods. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:116 / 130
页数:15
相关论文
共 50 条
  • [41] DOA Estimation Based on Virtual Array Aperture Expansion Using Covariance Fitting Criterion
    Ma, Teng
    Yang, Minglei
    Zhu, Hangui
    Zhang, Yule
    Zhou, Dingsen
    REMOTE SENSING, 2024, 16 (14)
  • [42] SPARSE RECONSTRUCTION FOR SYNTHETIC APERTURE RADAR VIA GENERALIZED SPARSE COVARIANCE FITTING
    Yang, Xiaqing
    Zhang, Yongchao
    Mao, Deqing
    Bu, Yuanyuan
    Yang, Haiguang
    Shi, Jun
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 767 - 770
  • [43] Robust Group Identification and Variable Selection in Sliced Inverse Regression Using Tukey's Biweight Criterion and Ball Covariance
    Alkenani, Ali
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2022, 35 (02): : 748 - 763
  • [44] ONLINE HIGH RESOLUTION STOCHASTIC RADIATION RADAR IMAGING USING SPARSE COVARIANCE FITTING
    Zhang, Yongchao
    Mao, Deqing
    Bu, Yuanyuan
    Wu, Junjie
    Huang, Yulin
    Jakobsson, Andreas
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8562 - 8565
  • [45] Wavelet-domain group-sparse denoising method for ECG signals
    Chen, Changfang
    Shu, Minglei
    Zhou, Shuwang
    Liu, Zhaoyang
    Liu, Ruixia
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 83
  • [46] Sparse incremental regression modeling using correlation criterion with boosting search
    Chen, S
    Wang, XX
    Brown, DJ
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (03) : 198 - 201
  • [47] A new complex valued dictionary learning method for group-sparse representation
    Hao Hongxing
    Wu Lingda
    OPTIK, 2019, 196
  • [48] Sparse Regression Code with Sparse Dictionary for Absolute Error Criterion
    Konabe, Ryota
    Watanabe, Kazuho
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1515 - 1519
  • [49] Missing values: sparse inverse covariance estimation and an extension to sparse regression
    Nicolas Städler
    Peter Bühlmann
    Statistics and Computing, 2012, 22 : 219 - 235
  • [50] Missing values: sparse inverse covariance estimation and an extension to sparse regression
    Staedler, Nicolas
    Buehlmann, Peter
    STATISTICS AND COMPUTING, 2012, 22 (01) : 219 - 235