Tractability of Interpretability via Selection of Group-Sparse Models

被引:0
|
作者
Bhan, Nirav [1 ]
Baldassaffe, Luca [1 ]
Cevher, Volkan [1 ]
机构
[1] Ecole Polytech Fed Lausanne, LIONS, CH-1015 Lausanne, Switzerland
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Group-based sparsity models [1], [2] are proven instrumental in linear regression problems for recovering signals from much fewer measurements than standard compressive sensing. A promise of these models is to lead to "interpretable" signals for which we identify its constituent groups, however we show that, in general, claims of correctly identifying the groups with convex relaxations would lead to polynomial time solution algorithms for an NP-hard problem. Instead, leveraging a graph-based understanding of group models, we describe group structures which enable correct model identification in polynomial time via dynamic programming. We also show that group structures that lead to totally unimodular constraints have tractable relaxations. Finally, we highlight the non-convexity of the Pareto frontier of group-sparse approximations.
引用
收藏
页码:632 / 632
页数:1
相关论文
共 50 条
  • [1] Tractability of Interpretability via Selection of Group-Sparse Models
    Bhan, Nirav
    Baldassarre, Luca
    Cevher, Volkan
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1037 - 1041
  • [2] Group-Sparse Model Selection: Hardness and Relaxations
    Baldassarre, Luca
    Bhan, Nirav
    Cevher, Volkan
    Kyrillidis, Anastasios
    Satpathi, Siddhartha
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6508 - 6534
  • [3] Feature Selection With Group-Sparse Stochastic Gates
    Park, Hyeryn
    Lee, Changhee
    IEEE ACCESS, 2024, 12 : 102299 - 102312
  • [4] Tensor Completion via Group-Sparse Regularization
    Yang, Bo
    Wang, Gang
    Sidiropoulos, Nicholas D.
    2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 1750 - 1754
  • [5] Selective inference for group-sparse linear models
    Yang, Fan
    Barber, Rina Foygel
    Jain, Prateek
    Lafferty, John
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [6] Hyperparameter selection for group-sparse regression: A probabilistic approach
    Kronvall, Ted
    Jakobsson, Andreas
    SIGNAL PROCESSING, 2018, 151 : 107 - 118
  • [7] GROUP-SPARSE MATRIX RECOVERY
    Zeng, Xiangrong
    Figueiredo, Mario A. T.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [8] Learning Macroscopic Brain Connectomes via Group-Sparse Factorization
    Aminmansour, Farzane
    Patterson, Andrew
    Le, Lei
    Peng, Yisu
    Mitchell, Daniel
    Pestilli, Franco
    Caiafa, Cesar
    Greiner, Russell
    White, Martha
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] SCALE-INVARIANT ANOMALY DETECTION WITH MULTISCALE GROUP-SPARSE MODELS
    Carrera, Diego
    Boracchi, Giacomo
    Foi, Alessandro
    Wohlberg, Brendt
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3892 - 3896
  • [10] Multi-Frequency Tracking via Group-Sparse Optimal Transport
    Haasler, Isabel
    Elvander, Filip
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1048 - 1053