Decomposition of the discrete Ablowitz-Ladik hierarchy

被引:0
|
作者
Geng, Xianguo
Dai, H. H.
Zhu, Junyi
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
[2] City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinearization approach of Lax pairs is extended to the discrete Ablowitz-Ladik hierarchy. A new symplectic map and a class of new finite-dimensional Hamiltonian systems are derived, which are further proved to be completely integrable in the Liouville sense. An algorithm to solve the discrete Ablowitz-Ladik hierarchy is proposed. Based on the theory of algebraic curves, the straightening out of various flows is exactly given through the Abel-Jacobi coordinates. As an application, explicit quasi-periodic solutions for the discrete Ablowitz-Ladik hierarchy are obtained resorting to the Riemann theta functions.
引用
收藏
页码:281 / 312
页数:32
相关论文
共 50 条
  • [41] Nonlocal Reductions of the Ablowitz-Ladik Equation
    Grahovski, G. G.
    Mohammed, A. J.
    Susanto, H.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 197 (01) : 1412 - 1429
  • [42] Algebro-Geometric Finite-Band Solutions of the Ablowitz-Ladik Hierarchy
    Gesztesy, Fritz
    Holden, Helge
    Michor, Johanna
    Teschl, Gerald
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [43] New symmetries for the Ablowitz-Ladik hierarchies
    Zhang, Da-Jun
    Ning, Tong-Ke
    Bi, Jin-Bo
    Chen, Deng-Yuan
    [J]. PHYSICS LETTERS A, 2006, 359 (05) : 458 - 466
  • [44] Dynamics of the Ablowitz-Ladik soliton train
    Doktorov, EV
    Matsuka, NP
    Rothos, VM
    [J]. PHYSICAL REVIEW E, 2004, 69 (05): : 7
  • [45] Tau-functions for the Ablowitz-Ladik hierarchy: the matrix-resolvent method
    Cafasso, Mattia
    Yang, Di
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (20)
  • [46] A generalized Ablowitz-Ladik hierarchy, multi-Hamiltonian structure and Darboux transformation
    Qin Zhenyun
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
  • [47] A Lattice Hierarchy with a Free Function and Its Reductions to the Ablowitz-Ladik and Volterra Hierarchies
    Engui Fan
    Zonghang Yang
    [J]. International Journal of Theoretical Physics, 2009, 48 : 1 - 9
  • [48] Coupled Ablowitz-Ladik equations with branched dispersion
    Babalic, Corina N.
    Carstea, A. S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (41)
  • [49] Continuum limit for the Ablowitz-Ladik system
    Killip, Rowan
    Ouyang, Zhimeng
    Visan, Monica
    Wu, Lei
    [J]. NONLINEARITY, 2023, 36 (07) : 3751 - 3775
  • [50] An Ablowitz-Ladik system with a discrete potential: I. Extended resolvent
    Pogrebkov, AK
    Prati, MC
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 119 (01) : 407 - 419