Tau-functions for the Ablowitz-Ladik hierarchy: the matrix-resolvent method

被引:4
|
作者
Cafasso, Mattia [1 ]
Yang, Di [2 ]
机构
[1] Univ Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
欧盟地平线“2020”;
关键词
Ablowitz-Ladik hierarchy; tau-function; matrix-resolvent method; CUE; EQUATIONS; INTEGRALS; MODELS; TODA;
D O I
10.1088/1751-8121/ac5e74
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the matrix-resolvent method for computing logarithmic derivatives of tau-functions to the Ablowitz-Ladik hierarchy. In particular, we derive a formula for the generating series of the logarithmic derivatives of an arbitrary tau-function in terms of matrix resolvents. As an application, we provide a way of computing certain integrals over the unitary group.
引用
收藏
页数:16
相关论文
共 50 条