ON THE SPATIAL ASYMPTOTICS OF SOLUTIONS OF THE ABLOWITZ-LADIK HIERARCHY

被引:2
|
作者
Michor, Johanna [1 ,2 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Spatial asymptotics; Ablowitz-Ladik hierarchy; NONLINEAR SCHRODINGER-EQUATION;
D O I
10.1090/S0002-9939-2010-10595-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for decaying solutions of the Ablowitz-Ladik system, the leading asymptotic term is time independent. In addition, two arbitrary bounded solutions of the Ablowitz-Ladik system which are asymptotically close at the initial time stay close. All results are also derived for the associated hierarchy.
引用
收藏
页码:4249 / 4258
页数:10
相关论文
共 50 条
  • [1] The Ablowitz-Ladik Hierarchy Revisited
    Gesztesy, Fritz
    Holden, Helge
    Michor, Johanna
    Teschl, Gerald
    [J]. METHODS OF SPECTRAL ANALYSIS IN MATHEMATICAL PHYSICS, 2009, 186 : 139 - +
  • [2] Finite-genus solutions for the Ablowitz-Ladik hierarchy
    Vekslerchik, VE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (26): : 4983 - 4994
  • [3] Functional representation of the Ablowitz-Ladik hierarchy
    Vekslerchik, VE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03): : 1087 - 1099
  • [4] On an integrable discretisation of the Ablowitz-Ladik hierarchy
    Zullo, Federico
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
  • [5] Decomposition of the discrete Ablowitz-Ladik hierarchy
    Geng, Xianguo
    Dai, H. H.
    Zhu, Junyi
    [J]. STUDIES IN APPLIED MATHEMATICS, 2007, 118 (03) : 281 - 312
  • [6] Implementation of the Backlund transformations for the Ablowitz-Ladik hierarchy
    Vekslerchik, V. E.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22): : 6933 - 6953
  • [7] AN ABLOWITZ-LADIK INTEGRABLE LATTICE HIERARCHY WITH MULTIPLE POTENTIALS
    马文秀
    [J]. Acta Mathematica Scientia, 2020, 40 (03) : 670 - 678
  • [8] An Ablowitz-Ladik Integrable Lattice Hierarchy with Multiple Potentials
    Ma, Wen-Xiu
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (03) : 670 - 678
  • [9] Tri-Hamiltonian structure of the Ablowitz-Ladik hierarchy
    Li, Shuangxing
    Liu, Si-Qi
    Qu, Haonan
    Zhang, Youjin
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2022, 433
  • [10] An Ablowitz-Ladik Integrable Lattice Hierarchy with Multiple Potentials
    Wen-Xiu Ma
    [J]. Acta Mathematica Scientia, 2020, 40 : 670 - 678