Tau-functions for the Ablowitz-Ladik hierarchy: the matrix-resolvent method

被引:4
|
作者
Cafasso, Mattia [1 ]
Yang, Di [2 ]
机构
[1] Univ Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
欧盟地平线“2020”;
关键词
Ablowitz-Ladik hierarchy; tau-function; matrix-resolvent method; CUE; EQUATIONS; INTEGRALS; MODELS; TODA;
D O I
10.1088/1751-8121/ac5e74
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the matrix-resolvent method for computing logarithmic derivatives of tau-functions to the Ablowitz-Ladik hierarchy. In particular, we derive a formula for the generating series of the logarithmic derivatives of an arbitrary tau-function in terms of matrix resolvents. As an application, we provide a way of computing certain integrals over the unitary group.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] THE 2D TODA LATTICE AND THE ABLOWITZ-LADIK HIERARCHY
    VEKSLERCHIK, VE
    [J]. INVERSE PROBLEMS, 1995, 11 (02) : 463 - 479
  • [32] Integrable coupling of the Ablowitz-Ladik hierarchy and its Hamiltonian structure
    Yao, Yuqin
    Ji, Jie
    Liu, Yuqing
    Chen, Dengyuan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (02) : 557 - 568
  • [33] Homotopy Analysis Method for Ablowitz-Ladik Lattice
    Hon, Benny Y. C.
    Fan, Engui
    Wang, Qi
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (10-11): : 599 - 605
  • [34] Ablowitz-Ladik hierarchy of integrable equations on a time-space scale
    Hovhannisyan, Gro
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
  • [35] A NEW METHOD TO SOLVE THE QUANTUM ABLOWITZ-LADIK SYSTEM
    SALERNO, M
    [J]. PHYSICS LETTERS A, 1992, 162 (05) : 381 - 384
  • [36] REDUCED UNITARY MATRIX MODELS AND THE HIERARCHY OF TAU-FUNCTIONS
    BOWICK, MJ
    MOROZOV, A
    SHEVITZ, D
    [J]. NUCLEAR PHYSICS B, 1991, 354 (2-3) : 496 - 530
  • [37] On tau-functions for the KdV hierarchy
    Dubrovin, Boris
    Yang, Di
    Zagier, Don
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (01):
  • [38] Algebro-Geometric Finite-Band Solutions of the Ablowitz-Ladik Hierarchy
    Gesztesy, Fritz
    Holden, Helge
    Michor, Johanna
    Teschl, Gerald
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [39] On tau-functions for the KdV hierarchy
    Boris Dubrovin
    Di Yang
    Don Zagier
    [J]. Selecta Mathematica, 2021, 27
  • [40] A generalized Ablowitz-Ladik hierarchy, multi-Hamiltonian structure and Darboux transformation
    Qin Zhenyun
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)