Dynamics of the Ablowitz-Ladik soliton train

被引:25
|
作者
Doktorov, EV
Matsuka, NP
Rothos, VM
机构
[1] BI Stepanov Phys Inst, Minsk 220072, BELARUS
[2] Inst Math, Minsk 220072, BELARUS
[3] Univ London, Queen Mary, Sch Math Sci, London E1 4NS, England
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 05期
关键词
D O I
10.1103/PhysRevE.69.056607
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is shown that dynamics of a train of N weakly interacting Ablowitz-Ladik solitons with (almost) equal velocities and masses is governed by the complex Toda chain model. The integrability of the complex Toda chain model provides the means to describe analytically various dynamical regimes of the N-soliton train and to predict initial soliton parameters responsible for each of the regimes. Numerical simulations corroborate well analytical predictions. A specific feature arising for the discrete soliton train system is the appearance of an additional (with respect to the lattice spacing) spatial scale-intersoliton distance. We comment on interplay between both spatial scales.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] DYNAMICS OF THE PERTURBED ABLOWITZ-LADIK SOLITON BEYOND THE ADIABATIC APPROXIMATION
    Doktorov, E. V.
    Matsuka, N. P.
    Rothos, V. M.
    [J]. NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS, 2005, 153 : 489 - 495
  • [2] Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model
    Fang, Jia-Jie
    Mou, Da-Sheng
    Zhang, Hui-Cong
    Wang, Yue-Yue
    [J]. OPTIK, 2021, 228
  • [3] Thresholds for soliton creation in the Ablowitz-Ladik lattice
    Adrian Espinola-Rocha, J.
    Kevrekidis, P. G.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (04) : 693 - 706
  • [4] Perturbation-induced radiation by the Ablowitz-Ladik soliton
    Doktorov, EV
    Matsuka, NP
    Rothos, VM
    [J]. PHYSICAL REVIEW E, 2003, 68 (06):
  • [5] Soliton dynamics of a discrete integrable Ablowitz-Ladik equation for some electrical and optical systems
    Wang, Yu-Feng
    Tian, Bo
    Li, Min
    Wang, Pan
    Jiang, Yan
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 35 : 46 - 51
  • [6] Soliton solutions and conservation laws for a generalized Ablowitz-Ladik system
    Song, Jiang-Yan
    Yang, Yong-Kang
    [J]. CHINESE JOURNAL OF PHYSICS, 2019, 60 : 271 - 278
  • [7] The Ablowitz-Ladik system on a graph
    Xia, Baoqiang
    [J]. NONLINEARITY, 2019, 32 (12) : 4729 - 4761
  • [8] ON DISCRETE ABLOWITZ-LADIK EIGENVALUE PROBLEM
    CHENG, Y
    [J]. SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1986, 29 (06): : 582 - 594
  • [9] The Ablowitz-Ladik Hierarchy Revisited
    Gesztesy, Fritz
    Holden, Helge
    Michor, Johanna
    Teschl, Gerald
    [J]. METHODS OF SPECTRAL ANALYSIS IN MATHEMATICAL PHYSICS, 2009, 186 : 139 - +
  • [10] INTEGRABLE DYNAMICS OF A DISCRETE CURVE AND THE ABLOWITZ-LADIK HIERARCHY
    DOLIWA, A
    SANTINI, PM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (03) : 1259 - 1273