Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model

被引:64
|
作者
Fang, Jia-Jie [1 ]
Mou, Da-Sheng [1 ]
Zhang, Hui-Cong [1 ,2 ]
Wang, Yue-Yue [1 ]
机构
[1] Zhejiang A&F Univ, Coll Sci, Linan 311300, Zhejiang, Peoples R China
[2] South China Normal Univ, Guangzhou 510631, Guangdong, Peoples R China
来源
OPTIK | 2021年 / 228卷
基金
中国国家自然科学基金;
关键词
Time-fractional Ablowitz-Ladik model; Discrete soliton; Fractional exponential function approach;
D O I
10.1016/j.ijleo.2020.166186
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A time-fractional Ablowitz-Ladik model is investigated by using the fractional exponential function approach, and bright and dark discrete soliton solutions, exponential discrete solutions and discrete unusual wave solutions are found. Dynamical evolutions of these fractional discrete solitons including bright and dark discrete solitons and two kinds of unusual waves are studied. When fractional order equals to 1, all fractional solutions obtained in this paper can degenerate into those in the literature.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Dynamics of the Ablowitz-Ladik soliton train
    Doktorov, EV
    Matsuka, NP
    Rothos, VM
    [J]. PHYSICAL REVIEW E, 2004, 69 (05): : 7
  • [2] Soliton dynamics of a discrete integrable Ablowitz-Ladik equation for some electrical and optical systems
    Wang, Yu-Feng
    Tian, Bo
    Li, Min
    Wang, Pan
    Jiang, Yan
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 35 : 46 - 51
  • [3] ON DISCRETE ABLOWITZ-LADIK EIGENVALUE PROBLEM
    CHENG, Y
    [J]. SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1986, 29 (06): : 582 - 594
  • [4] DYNAMICS OF THE PERTURBED ABLOWITZ-LADIK SOLITON BEYOND THE ADIABATIC APPROXIMATION
    Doktorov, E. V.
    Matsuka, N. P.
    Rothos, V. M.
    [J]. NONLINEAR WAVES: CLASSICAL AND QUANTUM ASPECTS, 2005, 153 : 489 - 495
  • [5] ON DISCRETE ABLOWITZ-LADIK EIGENVALUE PROBLEM
    程艺
    [J]. Science in China,SerA., 1986, Ser.A.1986 (06) : 582 - 594
  • [6] INTEGRABLE DYNAMICS OF A DISCRETE CURVE AND THE ABLOWITZ-LADIK HIERARCHY
    DOLIWA, A
    SANTINI, PM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (03) : 1259 - 1273
  • [7] ON DISCRETE ABLOWITZ-LADIK EIGENVALUE PROBLEM
    程艺
    [J]. Science China Mathematics, 1986, (06) : 582 - 594
  • [8] Thresholds for soliton creation in the Ablowitz-Ladik lattice
    Adrian Espinola-Rocha, J.
    Kevrekidis, P. G.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (04) : 693 - 706
  • [9] Decomposition of the discrete Ablowitz-Ladik hierarchy
    Geng, Xianguo
    Dai, H. H.
    Zhu, Junyi
    [J]. STUDIES IN APPLIED MATHEMATICS, 2007, 118 (03) : 281 - 312
  • [10] Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation
    Yu, Fajun
    [J]. PHYSICAL REVIEW E, 2015, 91 (03):