A Learning Framework to Inverse Kinematics of Redundant Manipulators

被引:3
|
作者
Jiokou, G. K. A. [1 ]
Melingui, A. [2 ]
Lakhal, O. [3 ]
Kom, M. [2 ]
Merzouki, R. [3 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Yaounde 8390, Cameroon
[2] Univ Yaounde I, Dept Elect & Telecommun Engn, Ecole Natl Super Polytech, Yaounde 8390, Cameroon
[3] CNRS UMR, CRIStAL Lab, F-59655 Villeneuve Dascq, France
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
D O I
10.1016/j.ifacol.2020.12.2699
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a learning framework for solving the inverse kinematics (IK) problem of high DOF redundant manipulators. The latter possess more DOFs than those required to obtain the end effector (EE) pose. Therefore, for a given EE pose, several joint angle vectors can be associated. However, for a given EE pose, if a set of joint angles is parameterized, the IK problem of redundant manipulators can be reduced to that of non-redundant ones, such that the closed-form analytical methods developed for non-redundant manipulators can be applied to obtain the IK solution. In this paper, some redundant manipulator's joints are parameterized through workspace clustering and configuration space clustering of the redundant manipulator. The growing neural gas network (GNG) is used for workspace clustering while a neighborhood function (NF) is introduced in configuration space clustering. The results obtained by performing a series of simulations on a 7 DOFs redundant manipulator demonstrate the effectiveness of the proposed approach. Copyright (C) 2020 The Authors.
引用
收藏
页码:9912 / 9917
页数:6
相关论文
共 50 条
  • [1] A Learning Framework to inverse kinematics of high DOF redundant manipulators
    Kouabon, A. G. Jiokou
    Melingui, A.
    Ahanda, J. J. B. Mvogo
    Lakhal, O.
    Coelen, V.
    Kom, M.
    Merzouki, R.
    [J]. MECHANISM AND MACHINE THEORY, 2020, 153
  • [2] ON THE INVERSE KINEMATICS OF REDUNDANT MANIPULATORS
    BAKER, DR
    WAMPLER, CW
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1988, 7 (02): : 3 - 21
  • [3] A SOLUTION TO THE INVERSE KINEMATICS OF REDUNDANT MANIPULATORS
    BENHABIB, B
    GOLDENBERG, AA
    FENTON, RG
    [J]. JOURNAL OF ROBOTIC SYSTEMS, 1985, 2 (04): : 373 - 385
  • [4] Machine learning-based framework for optimally solving the analytical inverse kinematics for redundant manipulators
    Vu, M. N.
    Beck, F.
    Schwegel, M.
    Hartl-Nesic, C.
    Nguyen, A.
    Kugi, A.
    [J]. MECHATRONICS, 2023, 91
  • [5] A Hybrid Inverse Kinematics Framework for Redundant Robot Manipulators Based on Hierarchical Clustering and Distal Teacher Learning
    Chen, Jie
    Lau, Henry Y. K.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 2597 - 2602
  • [6] Predictive Online Inverse Kinematics for Redundant Manipulators
    Schuetz, Christoph
    Buschmann, Thomas
    Baur, Joerg
    Pfaff, Julian
    Ulbrich, Heinz
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5056 - 5061
  • [7] Inverse kinematics of redundant manipulators with guaranteed performance
    Guo, Dongsheng
    Li, Aifen
    Cai, Jianhuang
    Feng, Qingshan
    Shi, Yang
    [J]. ROBOTICA, 2022, 40 (01) : 170 - 190
  • [8] A CLOSED SOLUTION TO THE INVERSE KINEMATICS OF REDUNDANT MANIPULATORS
    GALICKI, M
    [J]. MECHANISM AND MACHINE THEORY, 1991, 26 (02) : 221 - 226
  • [9] Geometric algorithm for the inverse kinematics of redundant manipulators
    Li Sheng
    Wang Yi-qing
    Chen Qing-wei
    Hu Wei-li
    [J]. PROCEEDINGS OF THE 2007 CHINESE CONTROL AND DECISION CONFERENCE, 2007, : 411 - 415
  • [10] Minimum effort inverse kinematics for redundant manipulators
    Deo, AS
    Walker, ID
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1997, 13 (05): : 767 - 775