A Learning Framework to Inverse Kinematics of Redundant Manipulators

被引:3
|
作者
Jiokou, G. K. A. [1 ]
Melingui, A. [2 ]
Lakhal, O. [3 ]
Kom, M. [2 ]
Merzouki, R. [3 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Yaounde 8390, Cameroon
[2] Univ Yaounde I, Dept Elect & Telecommun Engn, Ecole Natl Super Polytech, Yaounde 8390, Cameroon
[3] CNRS UMR, CRIStAL Lab, F-59655 Villeneuve Dascq, France
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
D O I
10.1016/j.ifacol.2020.12.2699
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a learning framework for solving the inverse kinematics (IK) problem of high DOF redundant manipulators. The latter possess more DOFs than those required to obtain the end effector (EE) pose. Therefore, for a given EE pose, several joint angle vectors can be associated. However, for a given EE pose, if a set of joint angles is parameterized, the IK problem of redundant manipulators can be reduced to that of non-redundant ones, such that the closed-form analytical methods developed for non-redundant manipulators can be applied to obtain the IK solution. In this paper, some redundant manipulator's joints are parameterized through workspace clustering and configuration space clustering of the redundant manipulator. The growing neural gas network (GNG) is used for workspace clustering while a neighborhood function (NF) is introduced in configuration space clustering. The results obtained by performing a series of simulations on a 7 DOFs redundant manipulator demonstrate the effectiveness of the proposed approach. Copyright (C) 2020 The Authors.
引用
收藏
页码:9912 / 9917
页数:6
相关论文
共 50 条
  • [11] Inverse kinematics of redundant manipulators with guaranteed performance
    Guo, Dongsheng
    Li, Aifen
    Cai, Jianhuang
    Feng, Qingshan
    Shi, Yang
    [J]. Robotica, 2022, 40 (01): : 170 - 190
  • [12] Learning framework for inverse kinematics of a highly redundant mobile manipulator
    Raja, R.
    Dutta, A.
    Dasgupta, B.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 120
  • [13] An inverse kinematics solution with trajectory scaling for redundant manipulators
    Wolinski, Lukasz
    Wojtyra, Marek
    [J]. MECHANISM AND MACHINE THEORY, 2024, 191
  • [15] Inverse Kinematics Learning for Redundant Robot Manipulators with Blending of Support Vector Regression Machines
    Chen, Jie
    Lau, Henry Y. K.
    [J]. 2016 IEEE WORKSHOP ON ADVANCED ROBOTICS AND ITS SOCIAL IMPACTS (ARSO), 2016, : 267 - 272
  • [16] Complete Framework of Jerk-Level Inverse-Free Solutions to Inverse Kinematics of Redundant Robot Manipulators
    Zhang Yunong
    He Liangyu
    Luo Jiawei
    Tan Hongzhou
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 4717 - 4722
  • [17] Inverse kinematics for redundant manipulators using the fast similarity factorization
    Koganezawa, K
    Tzvetkova, GV
    [J]. ESS'98 - SIMULATION TECHNOLOGY: SCIENCE AND ART, 1998, : 86 - 89
  • [18] Collision avoiding continuation method for the inverse kinematics of redundant manipulators
    Müller, A
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 1593 - 1598
  • [19] Randomized Path Planning for Redundant Manipulators without Inverse Kinematics
    Weghe, Mike Vande
    Ferguson, Dave
    Srinivasa, Siddhartha S.
    [J]. HUMANOIDS: 2007 7TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS, 2007, : 477 - +
  • [20] An integrated approach to inverse kinematics and path planning for redundant manipulators
    Bertram, Dominik
    Kuffner, James
    Dillmann, Ruediger
    Asfour, Tamim
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 1874 - 1879