Quasi-symmetric functions

被引:0
|
作者
Hazewinkel, M [1 ]
机构
[1] CWI, NL-1090 GB Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 2 denote the Leibniz-Hopf algebra, which also turns up as the Solomon descent algebra, and the algebra of noncommutative symmetric functions. As an algebra Z = Z < Z(1),Z(2), ...>, the free associative algebra over the integers in countably many indeterminates. The co-algebra structure is given by mu(Z(n),) = Sigma(i=0)(n), Z(i) x Z(n-i), Z(0)= 2. Let M be the graded dual of Z. This is the algebra of quasi-symmetric functions. The Ditters conjecture (1972), says that this algebra is a free commutative algebra over the integers. This was proved in [13]. In this paper I give an outline of the proof and discuss a number of consequences and related matters.
引用
收藏
页码:30 / 44
页数:15
相关论文
共 50 条
  • [21] Ideals and quotients of diagonally quasi-symmetric functions
    Li, Shu Xiao
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [22] Binary shuffle bases for quasi-symmetric functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    RAMANUJAN JOURNAL, 2016, 40 (01): : 207 - 225
  • [23] Quantum quasi-symmetric functions and Hecke algebras
    Thibon, JY
    Ung, BCV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (22): : 7337 - 7348
  • [24] Quasi-symmetric functions, noncommutative symmetric functions, and Hecke algebras at q = 0
    Duchamp, G.
    Krob, D.
    Leclerc, B.
    Thibon, J.-Y.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 322 (02):
  • [25] Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras
    Duchamp, G
    Hivert, F
    Thibon, JY
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2002, 12 (05) : 671 - 717
  • [26] Quasi-symmetric functions, noncommutative symmetric functions, and Hecke algebras at q=0
    Duchamp, G
    Krob, D
    Leclerc, B
    Thibon, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (02): : 107 - 112
  • [27] Shifted quasi-symmetric functions and the Hopf algebra of peak functions
    Bergeron, N
    Mykytiuk, S
    Sottile, F
    van Willigenburg, S
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 57 - 66
  • [28] The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions
    Nantel Bergeron
    Juana Sánchez-Ortega
    Mike Zabrocki
    Annals of Combinatorics, 2016, 20 : 283 - 300
  • [29] Hecke algebras, difference operators, and quasi-symmetric functions
    Hivert, F
    ADVANCES IN MATHEMATICS, 2000, 155 (02) : 181 - 238
  • [30] Algebra of operators on the ring of polytopes and quasi-symmetric functions
    Buchstaber, V. M.
    Erokhovets, N. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2010, 65 (02) : 381 - 383