Algebra of operators on the ring of polytopes and quasi-symmetric functions

被引:1
|
作者
Buchstaber, V. M. [1 ]
Erokhovets, N. Yu. [2 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow 117901, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
关键词
D O I
10.1070/RM2010v065n02ABEH004675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:381 / 383
页数:3
相关论文
共 50 条
  • [1] Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions
    Buchstaber, V. M.
    Erokhovets, N. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (02) : 271 - 367
  • [2] Shifted quasi-symmetric functions and the Hopf algebra of peak functions
    Bergeron, N
    Mykytiuk, S
    Sottile, F
    van Willigenburg, S
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 57 - 66
  • [3] The algebra of quasi-symmetric functions is free over the integers
    Hazewinkel, M
    ADVANCES IN MATHEMATICS, 2001, 164 (02) : 283 - 300
  • [4] Hecke algebras, difference operators, and quasi-symmetric functions
    Hivert, F
    ADVANCES IN MATHEMATICS, 2000, 155 (02) : 181 - 238
  • [5] Quasi-symmetric functions
    Hazewinkel, M
    FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, 2000, : 30 - 44
  • [6] Cyclic quasi-symmetric functions
    Ron M. Adin
    Ira M. Gessel
    Victor Reiner
    Yuval Roichman
    Israel Journal of Mathematics, 2021, 243 : 437 - 500
  • [7] Cyclic quasi-symmetric functions
    Adin, Ron M.
    Gessel, Ira M.
    Reiner, Victor
    Roichman, Yuval
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 243 (01) : 437 - 500
  • [8] A generalization of quasi-symmetric functions and noncommutative symmetric functions
    Duchamp, G
    Hivert, F
    Thibon, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1113 - 1116
  • [9] Symmetric and quasi-symmetric functions associated to polymatroids
    Harm Derksen
    Journal of Algebraic Combinatorics, 2009, 30 : 43 - 86
  • [10] A symmetrical algebra base of quasi-symmetric coinvariants
    Chapoton, F
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):