Quasi-symmetric functions

被引:0
|
作者
Hazewinkel, M [1 ]
机构
[1] CWI, NL-1090 GB Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 2 denote the Leibniz-Hopf algebra, which also turns up as the Solomon descent algebra, and the algebra of noncommutative symmetric functions. As an algebra Z = Z < Z(1),Z(2), ...>, the free associative algebra over the integers in countably many indeterminates. The co-algebra structure is given by mu(Z(n),) = Sigma(i=0)(n), Z(i) x Z(n-i), Z(0)= 2. Let M be the graded dual of Z. This is the algebra of quasi-symmetric functions. The Ditters conjecture (1972), says that this algebra is a free commutative algebra over the integers. This was proved in [13]. In this paper I give an outline of the proof and discuss a number of consequences and related matters.
引用
收藏
页码:30 / 44
页数:15
相关论文
共 50 条
  • [1] Cyclic quasi-symmetric functions
    Ron M. Adin
    Ira M. Gessel
    Victor Reiner
    Yuval Roichman
    Israel Journal of Mathematics, 2021, 243 : 437 - 500
  • [2] Cyclic quasi-symmetric functions
    Adin, Ron M.
    Gessel, Ira M.
    Reiner, Victor
    Roichman, Yuval
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 243 (01) : 437 - 500
  • [3] A generalization of quasi-symmetric functions and noncommutative symmetric functions
    Duchamp, G
    Hivert, F
    Thibon, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1113 - 1116
  • [4] Symmetric and quasi-symmetric functions associated to polymatroids
    Harm Derksen
    Journal of Algebraic Combinatorics, 2009, 30 : 43 - 86
  • [5] Symmetric and quasi-symmetric functions associated to polymatroids
    Derksen, Harm
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 30 (01) : 43 - 86
  • [6] Symmetric and quasi-symmetric functions associated to polymatroids
    Derksen, Harm
    Journal of Algebraic Combinatorics, 2009, 30 (01): : 43 - 86
  • [7] Quasi-symmetric functions and the KP hierarchy
    Dimakis, Aristophanes
    Mueller-Hoissen, Folkert
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (04) : 449 - 460
  • [8] Catalan paths and quasi-symmetric functions
    Aval, JC
    Bergeron, N
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) : 1053 - 1062
  • [9] Some generalizations of quasi-symmetric functions and noncommutative symmetric functions
    Duchamp, G
    Hivert, F
    Thibon, JY
    FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, 2000, : 170 - 178
  • [10] GEOMETRIC CHARACTERIZATION OF QUASI-SYMMETRIC FUNCTIONS
    KRUGLIKOV, VI
    LUFERENKO, VP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (05): : 13 - 16