Quasi-symmetric functions

被引:0
|
作者
Hazewinkel, M [1 ]
机构
[1] CWI, NL-1090 GB Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 2 denote the Leibniz-Hopf algebra, which also turns up as the Solomon descent algebra, and the algebra of noncommutative symmetric functions. As an algebra Z = Z < Z(1),Z(2), ...>, the free associative algebra over the integers in countably many indeterminates. The co-algebra structure is given by mu(Z(n),) = Sigma(i=0)(n), Z(i) x Z(n-i), Z(0)= 2. Let M be the graded dual of Z. This is the algebra of quasi-symmetric functions. The Ditters conjecture (1972), says that this algebra is a free commutative algebra over the integers. This was proved in [13]. In this paper I give an outline of the proof and discuss a number of consequences and related matters.
引用
收藏
页码:30 / 44
页数:15
相关论文
共 50 条
  • [31] Bidendriform bialgebras, trees, and free quasi-symmetric functions
    Foissy, Loic
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (02) : 439 - 459
  • [32] Inversion of some series of free quasi-symmetric functions
    Hivert, Florent
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) : 29 - 33
  • [33] Quasi-symmetric functions and up-down compositions
    Fuller, Evan
    Remmel, Jeffrey
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1754 - 1767
  • [34] The algebra of quasi-symmetric functions is free over the integers
    Hazewinkel, M
    ADVANCES IN MATHEMATICS, 2001, 164 (02) : 283 - 300
  • [35] The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions
    Bergeron, Nantel
    Sanchez-Ortega, Juana
    Zabrocki, Mike
    ANNALS OF COMBINATORICS, 2016, 20 (02) : 283 - 300
  • [36] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    Toumazet, Frederic
    ANNALS OF COMBINATORICS, 2020, 24 (03) : 557 - 576
  • [37] A Noncommutative Cycle Index and New Bases of Quasi-symmetric Functions and Noncommutative Symmetric Functions
    Jean-Christophe Novelli
    Jean-Yves Thibon
    Frédéric Toumazet
    Annals of Combinatorics, 2020, 24 : 557 - 576
  • [38] Quasi-symmetric embeddings
    Aseev V.V.
    Journal of Mathematical Sciences, 2002, 108 (3) : 375 - 410
  • [39] Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions
    Buchstaber, V. M.
    Erokhovets, N. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (02) : 271 - 367
  • [40] QUASI-SYMMETRIC FUNCTIONS AND MOD p MULTIPLE HARMONIC SUMS
    Hoffman, Michael E.
    KYUSHU JOURNAL OF MATHEMATICS, 2015, 69 (02) : 345 - 366