Integrated Feature Selection and Parameter Optimization for Evolving Spiking Neural Networks using Quantum Inspired Particle Swarm Optimization

被引:11
|
作者
Hamed, Haza Nuzly Abdull [1 ]
Kasabov, Nikola [1 ]
Shamsuddin, Siti Mariyam [2 ]
机构
[1] Auckland Univ Technol, KEDRI, Auckland, New Zealand
[2] Univ Teknol Malaysia, Soft Computing Res Grp, Johor Baharu, Johor, Malaysia
关键词
Evolving Spiking Neural Network; Particle Swarm; Quantum Computing; Feature Optimization; Parameter Optimization;
D O I
10.1109/SoCPaR.2009.139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel method for optimizing features and parameters in the Evolving Spiking Neural Network (ESNN) using Quantum-inspired Particle Swarm Optimization (QiPSO). This study reveals the interesting concept of QiPSO in which information is represented as binary structures. The mechanism simultaneously optimizes the ESNN parameters and relevant features using wrapper approach. A synthetic dataset is used to evaluate the performance of the proposed method. The results show that QiPSO yields promising outcomes in obtaining the best combination of ESNN parameters as well as in identifying the most relevant features.
引用
收藏
页码:695 / +
页数:2
相关论文
共 50 条
  • [41] PARTICLE SWARM OPTIMIZATION-BASED FEATURE SELECTION AND PARAMETER OPTIMIZATION FOR POWER SYSTEM DISTURBANCES CLASSIFICATION
    Ahila, R.
    Sadasivam, V.
    Manimala, K.
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2012, 26 (09) : 832 - 861
  • [42] Quantum inspired Particle Swarm Optimization with guided exploration for function optimization
    Agrawal, R. K.
    Kaur, Baljeet
    Agarwal, Parul
    [J]. APPLIED SOFT COMPUTING, 2021, 102
  • [43] Bio-Inspired Feature Selection: An Improved Binary Particle Swarm Optimization Approach
    Ji, Bai
    Lu, Xiaozheng
    Sun, Geng
    Zhang, Wei
    Li, Jiahui
    Xiao, Yinzhe
    [J]. IEEE ACCESS, 2020, 8 : 85989 - 86002
  • [44] Automatic image annotation using feature selection based on improving quantum particle swarm optimization
    Jin, Cong
    Jin, Shu-Wei
    [J]. SIGNAL PROCESSING, 2015, 109 : 172 - 181
  • [45] Feature Subset Selection Using Binary Quantum Particle Swarm Optimization for Spam Detection System
    Behjat, Amir Rajabi
    Mustapha, Aida
    Nezamabadi-Pour, Hossein
    Sulaiman, Md Nasir
    Mustapha, Norwati
    [J]. ADVANCED SCIENCE LETTERS, 2014, 20 (01) : 188 - 192
  • [46] Variance Based Particle Swarm Optimization for Function Optimization and Feature Selection
    Prasad, Yamuna
    Biswas, K. K.
    Hanmandlu, M.
    Jain, Chakresh Kumar
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING (SEMCCO 2015), 2016, 9873 : 104 - 115
  • [47] Particle swarm optimization based feature selection using factorial design
    Kocak, Emre
    Orkcu, Haci Hasan
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (03): : 879 - 896
  • [48] Particle distance rank feature selection by particle swarm optimization
    Shafipour, Milad
    Rashno, Abdolreza
    Fadaei, Sadegh
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [49] Feature Subset Selection for Clustering using Binary Particle Swarm Optimization
    Dastider, Surjodoy Ghosh
    Kashyap, Himanshu
    Mandal, Shashwata
    Ghosh, Abhinandan
    Goswami, Saptarsi
    [J]. 2015 14TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (ICIT 2015), 2015, : 159 - 164
  • [50] FEATURE SELECTION USING PARTICLE SWARM OPTIMIZATION WITH APPLICATION IN SPAM FILTERING
    Lai, Chih-Chin
    Wu, Chih-Hung
    Tsai, Ming-Chi
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (02): : 423 - 432