Integrated Feature Selection and Parameter Optimization for Evolving Spiking Neural Networks using Quantum Inspired Particle Swarm Optimization

被引:11
|
作者
Hamed, Haza Nuzly Abdull [1 ]
Kasabov, Nikola [1 ]
Shamsuddin, Siti Mariyam [2 ]
机构
[1] Auckland Univ Technol, KEDRI, Auckland, New Zealand
[2] Univ Teknol Malaysia, Soft Computing Res Grp, Johor Baharu, Johor, Malaysia
关键词
Evolving Spiking Neural Network; Particle Swarm; Quantum Computing; Feature Optimization; Parameter Optimization;
D O I
10.1109/SoCPaR.2009.139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel method for optimizing features and parameters in the Evolving Spiking Neural Network (ESNN) using Quantum-inspired Particle Swarm Optimization (QiPSO). This study reveals the interesting concept of QiPSO in which information is represented as binary structures. The mechanism simultaneously optimizes the ESNN parameters and relevant features using wrapper approach. A synthetic dataset is used to evaluate the performance of the proposed method. The results show that QiPSO yields promising outcomes in obtaining the best combination of ESNN parameters as well as in identifying the most relevant features.
引用
收藏
页码:695 / +
页数:2
相关论文
共 50 条
  • [21] Feature Selection with Fluid Mechanics Inspired Particle Swarm Optimization for Microarray Data
    [J]. Dong, Ruyi (dongruyi@163.com), 1600, Beijing Institute of Technology (26):
  • [22] A Forward Search Inspired Particle Swarm Optimization Algorithm for Feature Selection in Classification
    Li, An-Da
    Xue, Bing
    Zhang, Mengjie
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 786 - 793
  • [23] Feature Selection with Fluid Mechanics Inspired Particle Swarm Optimization for Microarray Data
    Shengsheng Wang
    Ruyi Dong
    [J]. Journal of Beijing Institute of Technology, 2017, 26 (04) : 517 - 524
  • [24] Feature Selection of Diabetic Retinopathy Disease Using Particle Swarm Optimization and Neural Network
    Herliana, Asti
    Arifin, Toni
    Susanti, Sari
    Hikmah, Agung Baitul
    [J]. 2018 6TH INTERNATIONAL CONFERENCE ON CYBER AND IT SERVICE MANAGEMENT (CITSM), 2018, : 128 - 131
  • [25] Spiking Neural Networks Trained with Particle Swarm Optimization for Motor Imagery Classification
    Carino-Escobar, Ruben
    Cantillo-Negrete, Jessica
    Vazquez, Roberto A.
    Gutierrez-Martinez, Josefina
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2016, PT II, 2016, 9713 : 245 - 252
  • [26] Feature Selection based on Binary Particle Swarm Optimization and Neural Networks for Pathological Voice Detection
    Souza, Taciana A.
    Souza, Micael A.
    Costa, Washington C. de A.
    Costa, Silvana C.
    Correia, Suzete E. N.
    Vieira, Vinicius J. D.
    [J]. 2015 LATIN AMERICA CONGRESS ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2015,
  • [27] Efficient Optimization of Convolutional Neural Networks using Particle Swarm Optimization
    Yamasaki, Toshihiko
    Honma, Takuto
    Aizawa, Kiyoharu
    [J]. 2017 IEEE THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2017), 2017, : 70 - 73
  • [28] Simultaneous Feature Selection and Clustering Using Particle Swarm Optimization
    Swetha, K. P.
    Devi, V. Susheela
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 509 - 515
  • [29] FEATURE SELECTION USING PARTICLE SWARM OPTIMIZATION IN TEXT CATEGORIZATION
    Aghdam, Mehdi Hosseinzadeh
    Heidari, Setareh
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2015, 5 (04) : 231 - 238
  • [30] Feature Selection Using Particle Swarm Optimization in Intrusion Detection
    Ahmad, Iftikhar
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2015,