Integrated Feature Selection and Parameter Optimization for Evolving Spiking Neural Networks using Quantum Inspired Particle Swarm Optimization

被引:11
|
作者
Hamed, Haza Nuzly Abdull [1 ]
Kasabov, Nikola [1 ]
Shamsuddin, Siti Mariyam [2 ]
机构
[1] Auckland Univ Technol, KEDRI, Auckland, New Zealand
[2] Univ Teknol Malaysia, Soft Computing Res Grp, Johor Baharu, Johor, Malaysia
关键词
Evolving Spiking Neural Network; Particle Swarm; Quantum Computing; Feature Optimization; Parameter Optimization;
D O I
10.1109/SoCPaR.2009.139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel method for optimizing features and parameters in the Evolving Spiking Neural Network (ESNN) using Quantum-inspired Particle Swarm Optimization (QiPSO). This study reveals the interesting concept of QiPSO in which information is represented as binary structures. The mechanism simultaneously optimizes the ESNN parameters and relevant features using wrapper approach. A synthetic dataset is used to evaluate the performance of the proposed method. The results show that QiPSO yields promising outcomes in obtaining the best combination of ESNN parameters as well as in identifying the most relevant features.
引用
收藏
页码:695 / +
页数:2
相关论文
共 50 条
  • [31] Using Particle Swarm Optimization with Gradient Descent for Parameter Learning in Convolutional Neural Networks
    Wessels, Steven
    van der Haar, Dustin
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2021, 2021, 12702 : 119 - 128
  • [32] An Improved Particle Swarm Optimization for Feature Selection
    Liu, Yuanning
    Wang, Gang
    Chen, Huiling
    Dong, Hao
    Zhu, Xiaodong
    Wang, Sujing
    [J]. JOURNAL OF BIONIC ENGINEERING, 2011, 8 (02) : 191 - 200
  • [33] An improved particle swarm optimization for feature selection
    Yuanning Liu
    Gang Wang
    Huiling Chen
    Hao Dong
    Xiaodong Zhu
    Sujing Wang
    [J]. Journal of Bionic Engineering, 2011, 8 : 191 - 200
  • [34] An improved particle swarm optimization for feature selection
    Chen, Li-Fei
    Su, Chao-Ton
    Chen, Kun-Huang
    [J]. INTELLIGENT DATA ANALYSIS, 2012, 16 (02) : 167 - 182
  • [35] The novel parameter selection of Particle swarm optimization
    Li, Zhuo
    Qu, Xueluo
    [J]. ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 344 - +
  • [36] Multimodal particle swarm optimization for feature selection
    Hu, Xiao-Min
    Zhang, Shou-Rong
    Li, Min
    Deng, Jeremiah D.
    [J]. APPLIED SOFT COMPUTING, 2021, 113
  • [37] A Survey on Particle Swarm Optimization in Feature Selection
    Kothari, Vipul
    Anuradha, J.
    Shah, Shreyak
    Mittal, Prerit
    [J]. GLOBAL TRENDS IN INFORMATION SYSTEMS AND SOFTWARE APPLICATIONS, PT 2, 2012, 270 : 192 - 201
  • [38] Particle swarm optimization for parameter determination and feature selection of support vector machines
    Lin, Shih-Wei
    Ying, Kuo-Ching
    Chen, Shih-Chieh
    Lee, Zne-Jung
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (04) : 1817 - 1824
  • [39] Evolving Neural Networks: A Comparison between Differential Evolution and Particle Swarm Optimization
    Garro, Beatriz A.
    Sossa, Humberto
    Vazquez, Roberto A.
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT I, 2011, 6728 : 447 - 454
  • [40] Particle Swarm Optimization for Automatically Evolving Convolutional Neural Networks for Image Classification
    Lawrence, Tom
    Zhang, Li
    Lim, Chee Peng
    Phillips, Emma-Jane
    [J]. IEEE ACCESS, 2021, 9 : 14369 - 14386