Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems

被引:90
|
作者
Ern, Alexandre [1 ]
Stephansen, Annette F. [1 ,2 ,3 ]
Vohralik, Martin [4 ,5 ]
机构
[1] Univ Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
[2] ANDRA, F-92298 Chatenay Malabry, France
[3] Ctr Integrated Petr Res, N-5007 Bergen, Norway
[4] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[5] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
关键词
Convection-diffusion-reaction equation; Discontinuous Galerkin methods; A posteriori error estimates; Robustness; Dominant convection; Dominant reaction; Inhomogeneous and anisotropic diffusion; FINITE-ELEMENT APPROXIMATION; LOCALLY CONSERVATIVE METHODS; ELLIPTIC PROBLEMS; FLUX RECONSTRUCTION; EQUATIONS; ADVECTION;
D O I
10.1016/j.cam.2009.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and study a posteriori error estimates for convection-diffusion-reaction problems with inhomogeneous and anisotropic diffusion approximated by weighted interior-penalty discontinuous Galerkin methods. Our twofold objective is to derive estimates without undetermined constants and to analyze carefully the robustness of the estimates in singularly perturbed regimes due to dominant convection or reaction. We first derive locally computable estimates for the error measured in the energy (semi)norm. These estimates are evaluated using H(div, Omega)-conforming diffusive and convective flux reconstructions, thereby extending the previous work on pure diffusion problems. The resulting estimates are semi-robust in the sense that local lower error bounds can be derived using suitable cutoff functions of the local Peclet and Damkohler numbers. Fully robust estimates are obtained for the error measured in an augmented norm consisting of the energy (semi)norm, a dual norm of the skew-symmetric part of the differential operator, and a suitable contribution of the interelement jumps of the discrete solution. Numerical experiments are presented to illustrate the theoretical results. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 130
页数:17
相关论文
共 50 条
  • [31] Functional A Posteriori Error Estimates for Discontinuous Galerkin Approximations of Elliptic Problems
    Lazarov, Raytcho
    Repin, Sergey
    Tomar, Satyendra K.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 952 - 971
  • [32] A local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations
    Abdulle, Assyr
    de Souza, Giacomo Rosilho
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [33] Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems
    Dolejsí, V
    Feistauer, M
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2005, 26 (03) : 349 - 383
  • [34] Discontinuous Galerkin solution of the convection-diffusion-reaction equations in fluidized beds
    Varma, V. Dhanya
    Chamakuri, Nagaiah
    Nadupuri, Suresh Kumar
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 188 - 201
  • [35] Stability of Nonlinear Convection-Diffusion-Reaction Systems in Discontinuous Galerkin Methods
    Michoski, C.
    Alexanderian, A.
    Paillet, C.
    Kubatko, E. J.
    Dawson, C.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 516 - 550
  • [36] A New Residual Posteriori Error Estimates of Mixed Finite Element Methods for Convection-Diffusion-Reaction Equations
    Du, Shaohong
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) : 593 - 624
  • [37] A POSTERIORI ERROR ESTIMATES FOR DARCY-FORCHHEIMER'S PROBLEM COUPLED WITH THE CONVECTION-DIFFUSION-REACTION EQUATION
    Triki, Faouzi
    Sayah, Toni
    Semaan, Georges
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (01) : 65 - 103
  • [38] A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system
    Nancy Chalhoub
    Pascal Omnes
    Toni Sayah
    Rebecca El Zahlaniyeh
    [J]. Numerical Algorithms, 2022, 89 : 1247 - 1286
  • [39] A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system
    Chalhoub, Nancy
    Omnes, Pascal
    Sayah, Toni
    El Zahlaniyeh, Rebecca
    [J]. NUMERICAL ALGORITHMS, 2022, 89 (03) : 1247 - 1286
  • [40] Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems
    Burman, E
    Hansbo, P
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (15-16) : 1437 - 1453