A POSTERIORI ERROR ESTIMATES FOR DARCY-FORCHHEIMER'S PROBLEM COUPLED WITH THE CONVECTION-DIFFUSION-REACTION EQUATION

被引:0
|
作者
Triki, Faouzi [1 ]
Sayah, Toni [2 ]
Semaan, Georges [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, UMR 5224, Lab Jean Kuntzmann, 700 Ave Cent, F-38401 St Martin Dheres, France
[2] Univ St Joseph Beyrouth, Unite Rech Math & Modelisat, CAR, Fac Sci, BP 11-514 Riad El Solh, Beirut 11072050, Lebanon
关键词
Darcy-Forchheimer problem; convection-diffusion-reaction equation; finite element method; a posteriori error estimates; ADAPTIVE MESH-REFINEMENT; THEORETICAL DERIVATION; DISCRETIZATION; INTERPOLATION; OPERATOR; FLOW;
D O I
10.4208/ijnam2024-1003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we derive a posteriori error estimates for the convection-diffusion-reaction equation coupled with the Darcy-Forchheimer problem by a nonlinear external source depending on the concentration of the fluid. We introduce the variational formulation associated to the problem, and discretize it by using the finite element method. We prove optimal a posteriori errors with two types of calculable error indicators. The first one is linked to the linearization and the second one to the discretization. Then we find upper and lower error bounds under additional regularity assumptions on the exact solutions. Finally, numerical computations are performed to show the effectiveness of the obtained error indicators.
引用
收藏
页码:65 / 103
页数:39
相关论文
共 50 条
  • [1] A Posteriori Error Estimates for Darcy-Forchheimer's Problem
    Sayah, Toni
    Semaan, Georges
    Triki, Faouzi
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (02) : 517 - 544
  • [2] Finite element methods for the Darcy-Forchheimer problem coupled with the convection-diffusion-reaction problem
    Sayah, Toni
    Semaan, Georges
    Triki, Faouzi
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (06) : 2643 - 2678
  • [3] A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system
    Nancy Chalhoub
    Pascal Omnes
    Toni Sayah
    Rebecca El Zahlaniyeh
    Numerical Algorithms, 2022, 89 : 1247 - 1286
  • [4] A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system
    Chalhoub, Nancy
    Omnes, Pascal
    Sayah, Toni
    El Zahlaniyeh, Rebecca
    NUMERICAL ALGORITHMS, 2022, 89 (03) : 1247 - 1286
  • [5] A posteriori error estimates for Darcy's problem coupled with the heat equation
    Dib, Serena
    Girault, Vivette
    Hecht, Frederic
    Sayah, Toni
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2019, 53 (06) : 2121 - 2159
  • [6] A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem
    Toni Sayah
    Computational and Applied Mathematics, 2021, 40
  • [7] A posteriori error estimates for the time-dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation
    Jad Dakroub
    Joanna Faddoul
    Pascal Omnes
    Toni Sayah
    Advances in Computational Mathematics, 2023, 49
  • [8] A posteriori error estimates for the time-dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation
    Dakroub, Jad
    Faddoul, Joanna
    Omnes, Pascal
    Sayah, Toni
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (04)
  • [9] A posteriori error estimates for the Brinkman-Darcy-Forchheimer problem
    Sayah, Toni
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (07):
  • [10] A priori estimates to solutions of the time-fractional convection-diffusion-reaction equation coupled with the Darcy system
    Hendy, Ahmed S.
    Zaky, Mahmoud A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 109