Stability of Nonlinear Convection-Diffusion-Reaction Systems in Discontinuous Galerkin Methods

被引:10
|
作者
Michoski, C. [1 ,2 ]
Alexanderian, A. [2 ,3 ]
Paillet, C. [5 ]
Kubatko, E. J. [4 ]
Dawson, C. [2 ]
机构
[1] Univ Colorado, Computat Mech & Geometry Lab CMGLab, Aerosp Engn Sci, Boulder, CO 80302 USA
[2] Univ Texas Austin, ICES, Austin, TX 78712 USA
[3] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[4] Ohio State Univ, Civil Engn & Geodet Engn Dept, Columbus, OH 43210 USA
[5] Ecole Normale Super, Dept Mech Engn, F-94230 Cachan, France
基金
美国国家科学基金会;
关键词
Stability analysis; Nonlinear; von Neumann; Discontinuous Galerkin; Runge-Kutta methods; RKSSP; RKC; Convection-Reaction-Diffusion; OPERATOR SPLITTING METHODS; RUNGE-KUTTA METHODS; INDEFINITE OPERATORS; EXPLICIT; ORDER; EQUATIONS;
D O I
10.1007/s10915-016-0256-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we provide an extension of the classical von Neumann stability analysis for high-order accurate discontinuous Galerkin methods applied to generalized nonlinear convection-reaction-diffusion systems. We provide a partial linearization under which a sufficient condition emerges that guarantees stability in this context. The stability behavior of these systems is then closely analyzed relative to Runge-Kutta Chebyshev (RKC) and strong stability preserving (RKSSP) temporal discretizations over a nonlinear system of reactive compressible gases arising in the study of atmospheric chemistry.
引用
收藏
页码:516 / 550
页数:35
相关论文
共 50 条
  • [1] Stability of Nonlinear Convection–Diffusion–Reaction Systems in Discontinuous Galerkin Methods
    C. Michoski
    A. Alexanderian
    C. Paillet
    E. J. Kubatko
    C. Dawson
    Journal of Scientific Computing, 2017, 70 : 516 - 550
  • [2] Discontinuous Galerkin Method Based on the Reduced Space for the Nonlinear Convection-Diffusion-Reaction Equation
    Hou, Shijin
    Xia, Yinhua
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
  • [3] A multiscale discontinuous Galerkin method for convection-diffusion-reaction problems
    Kim, Mi-Young
    Wheeler, Mary F.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 2251 - 2261
  • [4] A local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations
    Abdulle, Assyr
    de Souza, Giacomo Rosilho
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [5] Discontinuous Galerkin solution of the convection-diffusion-reaction equations in fluidized beds
    Varma, V. Dhanya
    Chamakuri, Nagaiah
    Nadupuri, Suresh Kumar
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 188 - 201
  • [6] Adaptive discontinuous galerkin methods for nonlinear diffusion-convection-reaction equations
    Karasözen, Bulent
    Uzunca, Murat
    Manguoğlu, Murat
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 85 - 93
  • [7] Adaptive discontinuous galerkin methods for nonlinear diffusion-convection-reaction equations
    Karasözen, Bulent
    Uzunca, Murat
    Manguoǧlu, Murat
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 85 - 93
  • [8] COMPUTATIONAL ASPECTS OF THE MULTISCALE DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION-REACTION PROBLEMS
    Jeong, ShinJa
    Kim, Mi-Young
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (02): : 1991 - 2006
  • [9] Two-grid discontinuous Galerkin method for convection-diffusion-reaction equations
    Zhong, Liuqiang
    Xuan, Yue
    Cui, Jintao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [10] A spectral Galerkin method for nonlinear delay convection-diffusion-reaction equations
    Liu, Bochao
    Zhang, Chengjian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (08) : 709 - 724