Stability of Nonlinear Convection-Diffusion-Reaction Systems in Discontinuous Galerkin Methods

被引:10
|
作者
Michoski, C. [1 ,2 ]
Alexanderian, A. [2 ,3 ]
Paillet, C. [5 ]
Kubatko, E. J. [4 ]
Dawson, C. [2 ]
机构
[1] Univ Colorado, Computat Mech & Geometry Lab CMGLab, Aerosp Engn Sci, Boulder, CO 80302 USA
[2] Univ Texas Austin, ICES, Austin, TX 78712 USA
[3] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[4] Ohio State Univ, Civil Engn & Geodet Engn Dept, Columbus, OH 43210 USA
[5] Ecole Normale Super, Dept Mech Engn, F-94230 Cachan, France
基金
美国国家科学基金会;
关键词
Stability analysis; Nonlinear; von Neumann; Discontinuous Galerkin; Runge-Kutta methods; RKSSP; RKC; Convection-Reaction-Diffusion; OPERATOR SPLITTING METHODS; RUNGE-KUTTA METHODS; INDEFINITE OPERATORS; EXPLICIT; ORDER; EQUATIONS;
D O I
10.1007/s10915-016-0256-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we provide an extension of the classical von Neumann stability analysis for high-order accurate discontinuous Galerkin methods applied to generalized nonlinear convection-reaction-diffusion systems. We provide a partial linearization under which a sufficient condition emerges that guarantees stability in this context. The stability behavior of these systems is then closely analyzed relative to Runge-Kutta Chebyshev (RKC) and strong stability preserving (RKSSP) temporal discretizations over a nonlinear system of reactive compressible gases arising in the study of atmospheric chemistry.
引用
收藏
页码:516 / 550
页数:35
相关论文
共 50 条
  • [41] Application of Discontinuous Galerkin Methods for Reaction-Diffusion Systems in Developmental Biology
    Zhu, Jianfeng
    Zhang, Yong-Tao
    Newman, Stuart A.
    Alber, Mark
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) : 391 - 418
  • [42] Adaptive discontinuous Galerkin methods for non-linear diffusion-convection-reaction equations
    Uzunca, Murat
    Karasozen, Bulent
    Manguoglu, Murat
    COMPUTERS & CHEMICAL ENGINEERING, 2014, 68 : 24 - 37
  • [43] Stability estimates in identification problems for the convection-diffusion-reaction equation
    G. V. Alekseev
    I. S. Vakhitov
    O. V. Soboleva
    Computational Mathematics and Mathematical Physics, 2012, 52 : 1635 - 1649
  • [44] Variational multiscale element free Galerkin method for convection-diffusion-reaction equation with small diffusion
    Zhang, Xiaohua
    Xiang, Hui
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 46 : 85 - 92
  • [45] On the Stability of Continuous-Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems
    Cangiani, Andrea
    Chapman, John
    Georgoulis, Emmanuil
    Jensen, Max
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 57 (02) : 313 - 330
  • [46] Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations
    Geiser, Juergen
    Hueso, Jose L.
    Martinez, Eulalia
    MATHEMATICS, 2020, 8 (03)
  • [47] GALERKIN AND LEAST SQUARES METHODS TO SOLVE A 3D CONVECTION-DIFFUSION-REACTION EQUATION WITH VARIABLE COEFFICIENTS
    Romao, Estaner Claro
    Mendes de Moura, Luiz Felipe
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2012, 61 (09) : 669 - 698
  • [48] Numerical Methods for the Time Fractional Convection-Diffusion-Reaction Equation
    Li, Changpin
    Wang, Zhen
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (10) : 1115 - 1153
  • [49] A finite volume discontinuous Galerkin scheme¶for nonlinear convection–diffusion problems
    V. Dolejší
    M. Feistauer
    C. Schwab
    CALCOLO, 2002, 39 : 1 - 40
  • [50] Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems
    Dolejsí, V
    Feistauer, M
    Sobotíková, V
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (25-26) : 2709 - 2733