Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations

被引:2
|
作者
Geiser, Juergen [1 ]
Hueso, Jose L. [2 ]
Martinez, Eulalia [2 ]
机构
[1] Ruhr Univ Bochum, Inst Theoret Elect Engn, Univ Str 150, D-44801 Bochum, Germany
[2] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Camino Vera S-N, E-46022 Valencia, Spain
关键词
time adaptive integration; adaptive iterative splitting; operator-splitting method; error control; convection-diffusion-reaction equations; iterative solver method; nonlinear equations; 35K45; 35K90; 47D60; 65M06; 65M55; SYSTEMS;
D O I
10.3390/math8030302
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article proposes adaptive iterative splitting methods to solve Multiphysics problems, which are related to convection-diffusion-reaction equations. The splitting techniques are based on iterative splitting approaches with adaptive ideas. Based on shifting the time-steps with additional adaptive time-ranges, we could embedded the adaptive techniques into the splitting approach. The numerical analysis of the adapted iterative splitting schemes is considered and we develop the underlying error estimates for the application of the adaptive schemes. The performance of the method with respect to the accuracy and the acceleration is evaluated in different numerical experiments. We test the benefits of the adaptive splitting approach on highly nonlinear Burgers' and Maxwell-Stefan diffusion equations.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Adaptive algorithms for convection-diffusion-reaction equations of quenching type
    Sheng, Q
    Khaliq, AQM
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS, 2001, 8 (01): : 129 - 148
  • [2] Supersymmetry and convection-diffusion-reaction equations
    Ho, Choon-Lin
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (05):
  • [3] Special iterative methods for solution of the steady Convection-Diffusion-Reaction equation with dominant convection
    Krukier, L. A.
    Martinova, T. S.
    Krukier, B. L.
    Pichugina, O. A.
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 1239 - 1248
  • [4] A local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations
    Abdulle, Assyr
    de Souza, Giacomo Rosilho
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [5] ADAPTIVE GRIDS IN THE CONTEXT OF ALGEBRAIC STABILIZATIONS FOR CONVECTION-DIFFUSION-REACTION EQUATIONS
    Jha, Abhinav
    John, Volker
    Knobloch, Petr
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04): : B564 - B589
  • [6] Domain decomposition methods applied to a system of convection-diffusion-reaction equations
    Knoll, DA
    McHugh, PR
    Keyes, DE
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 235 - 238
  • [7] A Linearized Adaptive Dynamic Diffusion Finite Element Method for Convection-Diffusion-Reaction Equations
    Shaohong Du
    Qianqian Hou
    Xiaoping Xie
    [J]. Annals of Applied Mathematics, 2023, 39 (03) : 323 - 351
  • [8] Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations
    ShaoHong Du
    XiaoPing Xie
    [J]. Science China Mathematics, 2015, 58 : 1327 - 1348
  • [9] Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations
    DU ShaoHong
    XIE XiaoPing
    [J]. Science China Mathematics, 2015, 58 (06) : 1327 - 1348
  • [10] Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations
    Du ShaoHong
    Xie XiaoPing
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (06) : 1327 - 1348