Stability of Nonlinear Convection-Diffusion-Reaction Systems in Discontinuous Galerkin Methods

被引:10
|
作者
Michoski, C. [1 ,2 ]
Alexanderian, A. [2 ,3 ]
Paillet, C. [5 ]
Kubatko, E. J. [4 ]
Dawson, C. [2 ]
机构
[1] Univ Colorado, Computat Mech & Geometry Lab CMGLab, Aerosp Engn Sci, Boulder, CO 80302 USA
[2] Univ Texas Austin, ICES, Austin, TX 78712 USA
[3] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[4] Ohio State Univ, Civil Engn & Geodet Engn Dept, Columbus, OH 43210 USA
[5] Ecole Normale Super, Dept Mech Engn, F-94230 Cachan, France
基金
美国国家科学基金会;
关键词
Stability analysis; Nonlinear; von Neumann; Discontinuous Galerkin; Runge-Kutta methods; RKSSP; RKC; Convection-Reaction-Diffusion; OPERATOR SPLITTING METHODS; RUNGE-KUTTA METHODS; INDEFINITE OPERATORS; EXPLICIT; ORDER; EQUATIONS;
D O I
10.1007/s10915-016-0256-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we provide an extension of the classical von Neumann stability analysis for high-order accurate discontinuous Galerkin methods applied to generalized nonlinear convection-reaction-diffusion systems. We provide a partial linearization under which a sufficient condition emerges that guarantees stability in this context. The stability behavior of these systems is then closely analyzed relative to Runge-Kutta Chebyshev (RKC) and strong stability preserving (RKSSP) temporal discretizations over a nonlinear system of reactive compressible gases arising in the study of atmospheric chemistry.
引用
收藏
页码:516 / 550
页数:35
相关论文
共 50 条
  • [31] Using Krylov-subspace iterations in discontinuous Galerkin methods for nonlinear reaction-diffusion systems
    Estep, DJ
    Freund, RW
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 327 - 335
  • [32] Polymerase chain reaction in natural convection systems: A convection-diffusion-reaction model
    Yariv, E
    Ben-Dov, G
    Dorfman, KD
    EUROPHYSICS LETTERS, 2005, 71 (06): : 1008 - 1014
  • [33] Variational Multiscale Finite-Element Methods for a Nonlinear Convection-Diffusion-Reaction Equation
    Zhelnin, M. S.
    Kostina, A. A.
    Plekhov, O. A.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2020, 61 (07) : 1128 - 1139
  • [34] Superconvergence of Discontinuous Galerkin Methods for Convection-Diffusion Problems
    Zuozheng Zhang
    Ziqing Xie
    Zhimin Zhang
    Journal of Scientific Computing, 2009, 41 : 70 - 93
  • [35] Spacetime discontinuous Galerkin methods for convection-diffusion equations
    Sandra May
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 561 - 573
  • [36] Spacetime discontinuous Galerkin methods for convection-diffusion equations
    May, Sandra
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 561 - 573
  • [37] Superconvergence of Discontinuous Galerkin Methods for Convection-Diffusion Problems
    Zhang, Zuozheng
    Xie, Ziqing
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (01) : 70 - 93
  • [38] Stability Estimates in Identification Problems for the Convection-Diffusion-Reaction Equation
    Alekseev, G. V.
    Vakhitov, I. S.
    Soboleva, O. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (12) : 1635 - 1649
  • [39] Application of Discontinuous Galerkin Methods for Reaction-Diffusion Systems in Developmental Biology
    Jianfeng Zhu
    Yong-Tao Zhang
    Stuart A. Newman
    Mark Alber
    Journal of Scientific Computing, 2009, 40 : 391 - 418
  • [40] Boundary Control Problem for a Nonlinear Convection-Diffusion-Reaction Equation
    Brizitskii, R. V.
    Saritskaya, Zh. Yu.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (12) : 2053 - 2063