Unconditionally convergent numerical method for the two-dimensional nonlinear time fractional diffusion-wave equation

被引:20
|
作者
Zhang, Hui [1 ]
Jiang, Xiaoyun [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-dimensional nonlinear time fractional diffusion-wave equation; Optimal error estimate; Crank-Nicolson method; Legendre spectral method; ADVECTION-DISPERSION EQUATIONS; SPECTRAL METHOD; SINE-GORDON; ANOMALOUS DIFFUSION; GALERKIN METHOD; ELEMENT-METHOD; APPROXIMATIONS;
D O I
10.1016/j.apnum.2019.06.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a Crank-Nicolson Legendre spectral method for solving the two-dimensional nonlinear time fractional diffusion-wave equation in bounded rectangular domains. In terms of the error splitting argument technique, an optimal error estimate of the numerical scheme is obtained without any time-step size conditions, while the usual analysis for high dimensional nonlinear fractional problems always required certain time-step restrictions dependent on the spatial mesh size. Some numerical results are given to justify the theoretical analysis. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate
    Mostafa Abbaszadeh
    Mehdi Dehghan
    [J]. Numerical Algorithms, 2017, 75 : 173 - 211
  • [23] On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method
    M. S. Hashemi
    Mustafa Inc
    M. Parto-Haghighi
    Mustafa Bayram
    [J]. The European Physical Journal Plus, 134
  • [24] An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    [J]. NUMERICAL ALGORITHMS, 2017, 75 (01) : 173 - 211
  • [25] Numerical solution of fractional diffusion-wave equation based on fractional multistep method
    Yang, J. Y.
    Huang, J. F.
    Liang, D. M.
    Tang, Y. F.
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (14) : 3652 - 3661
  • [26] On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method
    Hashemi, M. S.
    Inc, Mustafa
    Parto-Haghighi, M.
    Bayram, Mustafa
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (10):
  • [27] Analysis of a meshless method for the time fractional diffusion-wave equation
    Mehdi Dehghan
    Mostafa Abbaszadeh
    Akbar Mohebbi
    [J]. Numerical Algorithms, 2016, 73 : 445 - 476
  • [28] Analysis of a meshless method for the time fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Mohebbi, Akbar
    [J]. NUMERICAL ALGORITHMS, 2016, 73 (02) : 445 - 476
  • [29] A numerical method for two-dimensional nonlinear modified time-fractional fourth-order diffusion equation
    He, Haiyan
    Liang, Kaijie
    Yin, Baoli
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2019, 10 (01)
  • [30] Numerical Analysis for the Variable Order Time Fractional Diffusion-Wave Equation
    Tian, Fupeng
    [J]. 2020 5TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (IEEE ICBDA 2020), 2020, : 131 - 134