Analysis of a meshless method for the time fractional diffusion-wave equation

被引:0
|
作者
Mehdi Dehghan
Mostafa Abbaszadeh
Akbar Mohebbi
机构
[1] Amirkabir University of Technology,Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences
[2] University of Kashan,Department of Applied Mathematics, Faculty of Mathematical Science
来源
Numerical Algorithms | 2016年 / 73卷
关键词
Time fractional diffusion-wave equation; Fractional derivative; Convergence analysis; Error estimate; Caputo derivative; Meshless Galerkin method; Radial basis functions; 65M70; 34A34;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a numerical technique is proposed for solving the time fractional diffusion-wave equation. We obtain a time discrete scheme based on finite difference formula. Then, we prove that the time discrete scheme is unconditionally stable and convergent using the energy method and the convergence order of the time discrete scheme is O(τ3−α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\tau ^{3-\alpha })$\end{document}. Firstly, we change the main problem based on Dirichlet boundary condition to a new problem based on Robin boundary condition and then, we consider a semi-discrete scheme with Robin boundary condition and show when β→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta \rightarrow +\infty $\end{document} solution of the main semi-discrete problem with Dirichlet boundary condition is convergent to the solution of the new semi-discrete problem with Robin boundary condition. We consider the new semi-discrete problem with Robin boundary condition and use the meshless Galerkin method to approximate the spatial derivatives. Finally, we obtain an error bound for the new problem. We prove that convergence order of the numerical scheme based on Galekin meshless is O(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(h)$\end{document}. In the considered method the appeared integrals are approximated using Gauss Legendre quadrature formula. The main aim of the current paper is to obtain an error estimate for the meshless Galerkin method based on the radial basis functions. Numerical examples confirm the efficiency and accuracy of the proposed scheme.
引用
收藏
页码:445 / 476
页数:31
相关论文
共 50 条
  • [1] Analysis of a meshless method for the time fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Mohebbi, Akbar
    [J]. NUMERICAL ALGORITHMS, 2016, 73 (02) : 445 - 476
  • [2] A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation
    Bhardwaj, Akanksha
    Kumar, Alpesh
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 160 : 146 - 165
  • [3] An efficient meshless method based on RBFs for the time fractional diffusion-wave equation
    Aslefallah M.
    Shivanian E.
    [J]. Afrika Matematika, 2018, 29 (7-8) : 1203 - 1214
  • [4] Analysis of a meshless generalized finite difference method for the time-fractional diffusion-wave equation
    Qing, Lanyu
    Li, Xiaolin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 172 : 134 - 151
  • [5] Wavelets method for the time fractional diffusion-wave equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Cattani, C.
    [J]. PHYSICS LETTERS A, 2015, 379 (03) : 71 - 76
  • [6] An implicit MLS meshless method for 2-D time dependent fractional diffusion-wave equation
    Yang, J. Y.
    Zhao, Y. M.
    Liu, N.
    Bu, W. P.
    Xu, T. L.
    Tang, Y. F.
    [J]. APPLIED MATHEMATICAL MODELLING, 2015, 39 (3-4) : 1229 - 1240
  • [7] A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method
    Bhardwaj, Akanksha
    Kumar, Alpesh
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (02) : 1883 - 1903
  • [8] A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method
    Akanksha Bhardwaj
    Alpesh Kumar
    [J]. Engineering with Computers, 2022, 38 : 1883 - 1903
  • [9] Meshless analysis of fractional diffusion-wave equations by generalized finite difference method
    Qing, Lanyu
    Li, Xiaolin
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 157
  • [10] Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    Wei, Huayi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1218 - 1232