In this paper a numerical technique is proposed for solving the time fractional diffusion-wave equation. We obtain a time discrete scheme based on finite difference formula. Then, we prove that the time discrete scheme is unconditionally stable and convergent using the energy method and the convergence order of the time discrete scheme is O(τ3−α)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal {O}(\tau ^{3-\alpha })$\end{document}. Firstly, we change the main problem based on Dirichlet boundary condition to a new problem based on Robin boundary condition and then, we consider a semi-discrete scheme with Robin boundary condition and show when β→+∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\beta \rightarrow +\infty $\end{document} solution of the main semi-discrete problem with Dirichlet boundary condition is convergent to the solution of the new semi-discrete problem with Robin boundary condition. We consider the new semi-discrete problem with Robin boundary condition and use the meshless Galerkin method to approximate the spatial derivatives. Finally, we obtain an error bound for the new problem. We prove that convergence order of the numerical scheme based on Galekin meshless is O(h)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal {O}(h)$\end{document}. In the considered method the appeared integrals are approximated using Gauss Legendre quadrature formula. The main aim of the current paper is to obtain an error estimate for the meshless Galerkin method based on the radial basis functions. Numerical examples confirm the efficiency and accuracy of the proposed scheme.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Yang, J. Y.
Huang, J. F.
论文数: 0引用数: 0
h-index: 0
机构:
QjngDao Univ, Sch Math Sci, Qingdao 266071, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Huang, J. F.
Liang, D. M.
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Elect Engn & Comp Sci, Dept Elect, Beijing 100871, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Liang, D. M.
Tang, Y. F.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Tang, Yifa
Vazquez, Luis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Complutense Madrid, IMI, Fac Informat, Dept Matemat Aplicada, E-28040 Madrid, SpainChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Vazquez, Luis
Yang, Jiye
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China