Analysis of a meshless method for the time fractional diffusion-wave equation

被引:0
|
作者
Mehdi Dehghan
Mostafa Abbaszadeh
Akbar Mohebbi
机构
[1] Amirkabir University of Technology,Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences
[2] University of Kashan,Department of Applied Mathematics, Faculty of Mathematical Science
来源
Numerical Algorithms | 2016年 / 73卷
关键词
Time fractional diffusion-wave equation; Fractional derivative; Convergence analysis; Error estimate; Caputo derivative; Meshless Galerkin method; Radial basis functions; 65M70; 34A34;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a numerical technique is proposed for solving the time fractional diffusion-wave equation. We obtain a time discrete scheme based on finite difference formula. Then, we prove that the time discrete scheme is unconditionally stable and convergent using the energy method and the convergence order of the time discrete scheme is O(τ3−α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\tau ^{3-\alpha })$\end{document}. Firstly, we change the main problem based on Dirichlet boundary condition to a new problem based on Robin boundary condition and then, we consider a semi-discrete scheme with Robin boundary condition and show when β→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta \rightarrow +\infty $\end{document} solution of the main semi-discrete problem with Dirichlet boundary condition is convergent to the solution of the new semi-discrete problem with Robin boundary condition. We consider the new semi-discrete problem with Robin boundary condition and use the meshless Galerkin method to approximate the spatial derivatives. Finally, we obtain an error bound for the new problem. We prove that convergence order of the numerical scheme based on Galekin meshless is O(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(h)$\end{document}. In the considered method the appeared integrals are approximated using Gauss Legendre quadrature formula. The main aim of the current paper is to obtain an error estimate for the meshless Galerkin method based on the radial basis functions. Numerical examples confirm the efficiency and accuracy of the proposed scheme.
引用
收藏
页码:445 / 476
页数:31
相关论文
共 50 条
  • [31] An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    [J]. NUMERICAL ALGORITHMS, 2017, 75 (01) : 173 - 211
  • [32] Numerical solution of fractional diffusion-wave equation based on fractional multistep method
    Yang, J. Y.
    Huang, J. F.
    Liang, D. M.
    Tang, Y. F.
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (14) : 3652 - 3661
  • [33] A new meshless method of solving 2D fractional diffusion-wave equations
    Du, Hong
    Chen, Zhong
    [J]. APPLIED MATHEMATICS LETTERS, 2022, 130
  • [34] The fundamental solutions for the fractional diffusion-wave equation
    Mainardi, F
    [J]. APPLIED MATHEMATICS LETTERS, 1996, 9 (06) : 23 - 28
  • [35] Numerical Solution of Fractional Diffusion-Wave Equation
    Chen, An
    Li, Changpin
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (01) : 19 - 39
  • [36] Solutions to the fractional diffusion-wave equation in a wedge
    Povstenko, Yuriy
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (01) : 122 - 135
  • [37] Fractional Diffusion-Wave Equation with Application in Electrodynamics
    Pskhu, Arsen
    Rekhviashvili, Sergo
    [J]. MATHEMATICS, 2020, 8 (11) : 1 - 13
  • [38] Solutions to the fractional diffusion-wave equation in a wedge
    Yuriy Povstenko
    [J]. Fractional Calculus and Applied Analysis, 2014, 17 : 122 - 135
  • [39] Two finite difference schemes for time fractional diffusion-wave equation
    Huang, Jianfei
    Tang, Yifa
    Vazquez, Luis
    Yang, Jiye
    [J]. NUMERICAL ALGORITHMS, 2013, 64 (04) : 707 - 720
  • [40] A Study on Fractional Diffusion-Wave Equation with a Reaction
    Abuomar, Mohammed M. A.
    Syam, Muhammed, I
    Azmi, Amirah
    [J]. SYMMETRY-BASEL, 2022, 14 (08):