Unconditionally convergent numerical method for the two-dimensional nonlinear time fractional diffusion-wave equation

被引:20
|
作者
Zhang, Hui [1 ]
Jiang, Xiaoyun [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-dimensional nonlinear time fractional diffusion-wave equation; Optimal error estimate; Crank-Nicolson method; Legendre spectral method; ADVECTION-DISPERSION EQUATIONS; SPECTRAL METHOD; SINE-GORDON; ANOMALOUS DIFFUSION; GALERKIN METHOD; ELEMENT-METHOD; APPROXIMATIONS;
D O I
10.1016/j.apnum.2019.06.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a Crank-Nicolson Legendre spectral method for solving the two-dimensional nonlinear time fractional diffusion-wave equation in bounded rectangular domains. In terms of the error splitting argument technique, an optimal error estimate of the numerical scheme is obtained without any time-step size conditions, while the usual analysis for high dimensional nonlinear fractional problems always required certain time-step restrictions dependent on the spatial mesh size. Some numerical results are given to justify the theoretical analysis. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] An ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation
    Fairweather, Graeme
    Yang, Xuehua
    Xu, Da
    Zhang, Haixiang
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 1217 - 1239
  • [32] Two finite difference schemes for time fractional diffusion-wave equation
    Huang, Jianfei
    Tang, Yifa
    Vazquez, Luis
    Yang, Jiye
    [J]. NUMERICAL ALGORITHMS, 2013, 64 (04) : 707 - 720
  • [33] Fourth-order numerical method for the space time tempered fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Deng, Weihua
    [J]. APPLIED MATHEMATICS LETTERS, 2017, 73 : 120 - 127
  • [34] A compact ADI scheme for the two dimensional time fractional diffusion-wave equation in polar coordinates
    Vong, Seakweng
    Wang, Zhibo
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (05) : 1692 - 1712
  • [35] Two finite difference schemes for time fractional diffusion-wave equation
    Jianfei Huang
    Yifa Tang
    Luis Vázquez
    Jiye Yang
    [J]. Numerical Algorithms, 2013, 64 : 707 - 720
  • [36] Nonlinear two-term time fractional diffusion-wave problem
    Stojanovic, Mirjana
    Gorenflo, Rudolf
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3512 - 3523
  • [37] Similarity solution to fractional nonlinear space-time diffusion-wave equation
    Silva Costa, F.
    Marao, J. A. P. F.
    Alves Soares, J. C.
    Capelas de Oliveira, E.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)
  • [38] An efficient Galerkin spectral method for two-dimensional fractional nonlinear reaction-diffusion-wave equation
    Guo, Shimin
    Mei, Liquan
    Li, Ying
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2449 - 2465
  • [39] Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation
    Jafari, H.
    Seifi, S.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 2006 - 2012
  • [40] Backward problems in time for fractional diffusion-wave equation
    Floridia, G.
    Yamamoto, M.
    [J]. INVERSE PROBLEMS, 2020, 36 (12)