Unconditionally convergent numerical method for the two-dimensional nonlinear time fractional diffusion-wave equation

被引:20
|
作者
Zhang, Hui [1 ]
Jiang, Xiaoyun [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-dimensional nonlinear time fractional diffusion-wave equation; Optimal error estimate; Crank-Nicolson method; Legendre spectral method; ADVECTION-DISPERSION EQUATIONS; SPECTRAL METHOD; SINE-GORDON; ANOMALOUS DIFFUSION; GALERKIN METHOD; ELEMENT-METHOD; APPROXIMATIONS;
D O I
10.1016/j.apnum.2019.06.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a Crank-Nicolson Legendre spectral method for solving the two-dimensional nonlinear time fractional diffusion-wave equation in bounded rectangular domains. In terms of the error splitting argument technique, an optimal error estimate of the numerical scheme is obtained without any time-step size conditions, while the usual analysis for high dimensional nonlinear fractional problems always required certain time-step restrictions dependent on the spatial mesh size. Some numerical results are given to justify the theoretical analysis. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条