Error analysis of direct discontinuous Galerkin method for two-dimensional fractional diffusion-wave equation
被引:18
|
作者:
论文数: 引用数:
h-index:
机构:
An, Na
[1
]
Huang, Chaobao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
Huang, Chaobao
[2
]
Yu, Xijun
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
Yu, Xijun
[3
]
机构:
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
[2] Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China
[3] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
Based on the finite difference scheme in temporal and the direct discontinuous Galerkin (DDG) method in spatial, a fully discrete DDG scheme is first proposed to solve the two-dimensional fractional diffusion-wave equation with Caputo derivative of order 1 < alpha < 2. The proposed scheme is unconditional stable, and the spatial global convergence and the temporal convergence order of O(Delta + h(k+1)) is derived in L-2 norm with P-k polynomial. Numerical experiments are presented to demonstrate the theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
机构:
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R China
Huang, Chaobao
论文数: 引用数:
h-index:
机构:
An, Na
Yu, Xijun
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing, Peoples R China