Calculation of homoclinic and heteroclinic orbits in 1D maps

被引:8
|
作者
Avrutin, Viktor [1 ,3 ]
Schenke, Bjoern [2 ]
Gardini, Laura [3 ]
机构
[1] Univ Stuttgart, IST, Stuttgart, Germany
[2] Univ Stuttgart, IPVS, Stuttgart, Germany
[3] Univ Urbino, DESP, I-61029 Urbino, Italy
关键词
Homoclinic orbits; Heteroclinic connections; Algorithms; Homoclinic and heteroclinic bifurcations; Piecewise smooth maps; Discontinuous maps; Chaotic attractors; SNAP-BACK REPELLERS; CHAOTIC ATTRACTORS; ROBUST CHAOS; SCENARIO; CRISIS;
D O I
10.1016/j.cnsns.2014.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Homoclinic orbits and heteroclinic connections are important in several contexts, in particular for a proof of the existence of chaos and for the description of bifurcations of chaotic attractors. In this work we discuss an algorithm for their numerical detection in smooth or piecewise smooth, continuous or discontinuous maps. The algorithm is based on the convergence of orbits in backward time and is therefore applicable to expanding fixed points and cycles. For simplicity, we present the algorithm using 1D maps. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1201 / 1214
页数:14
相关论文
共 50 条
  • [32] Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
    Van Gorder, Robert A.
    Choudhury, S. Roy
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (02):
  • [33] Homoclinic and Heteroclinic Orbits for a Class of Singular Planar Newtonian Systems
    Janczewska, Joanna
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 39 - 43
  • [34] Generic Transversality of Heteroclinic and Homoclinic Orbits for Scalar Parabolic Equations
    Pavel Brunovský
    Romain Joly
    Geneviève Raugel
    Journal of Dynamics and Differential Equations, 2022, 34 : 2639 - 2679
  • [35] Generic Transversality of Heteroclinic and Homoclinic Orbits for Scalar Parabolic Equations
    Brunovsky, Pavel
    Joly, Romain
    Raugel, Genevieve
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (04) : 2639 - 2679
  • [36] On Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2013, 8 (02):
  • [37] BIFURCATIONS OF HOMOCLINIC ORBITS IN BIMODAL MAPS
    HANSEN, KT
    PHYSICAL REVIEW E, 1994, 50 (02): : 1653 - 1656
  • [38] A note on homoclinic or heteroclinic orbits for the generalized Hénon map
    Yong-guo Shi
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 283 - 288
  • [39] The numerical computation of homoclinic orbits for maps
    Beyn, WJ
    Kleinkauf, JM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) : 1207 - 1236
  • [40] Saddle connections and heteroclinic orbits for standard maps
    Lomeli, HE
    NONLINEARITY, 1996, 9 (03) : 649 - 668