Calculation of homoclinic and heteroclinic orbits in 1D maps

被引:8
|
作者
Avrutin, Viktor [1 ,3 ]
Schenke, Bjoern [2 ]
Gardini, Laura [3 ]
机构
[1] Univ Stuttgart, IST, Stuttgart, Germany
[2] Univ Stuttgart, IPVS, Stuttgart, Germany
[3] Univ Urbino, DESP, I-61029 Urbino, Italy
关键词
Homoclinic orbits; Heteroclinic connections; Algorithms; Homoclinic and heteroclinic bifurcations; Piecewise smooth maps; Discontinuous maps; Chaotic attractors; SNAP-BACK REPELLERS; CHAOTIC ATTRACTORS; ROBUST CHAOS; SCENARIO; CRISIS;
D O I
10.1016/j.cnsns.2014.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Homoclinic orbits and heteroclinic connections are important in several contexts, in particular for a proof of the existence of chaos and for the description of bifurcations of chaotic attractors. In this work we discuss an algorithm for their numerical detection in smooth or piecewise smooth, continuous or discontinuous maps. The algorithm is based on the convergence of orbits in backward time and is therefore applicable to expanding fixed points and cycles. For simplicity, we present the algorithm using 1D maps. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1201 / 1214
页数:14
相关论文
共 50 条
  • [41] Heteroclinic orbits and rotation sets for twist maps
    Lomelí, HE
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 14 (02) : 343 - 354
  • [42] Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain
    Boer, MP
    Kooi, BW
    Kooijman, SALM
    JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 39 (01) : 19 - 38
  • [43] Two-heteroclinic orbits emerging in the reversible homoclinic pitchfork bifurcation
    Wagenknecht, T
    NONLINEARITY, 2005, 18 (02) : 527 - 542
  • [44] Homoclinic/Heteroclinic Connections of Equilibria and Periodic Orbits of Contact Binary Asteroids
    Liang, Yuying
    Xu, Ming
    Xu, Shijie
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (08) : 2042 - 2061
  • [45] CHAOS DUE TO HOMOCLINIC AND HETEROCLINIC ORBITS IN 2 COUPLED OSCILLATORS WITH NONISOCHRONISM
    POLIASHENKO, M
    MCKAY, SR
    PHYSICAL REVIEW A, 1992, 46 (08): : 5271 - 5274
  • [46] Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain
    M. P. Boer
    B. W. Kooi
    S. A. L. M. Kooijman
    Journal of Mathematical Biology, 1999, 39 : 19 - 38
  • [47] FLYBY DESIGN USING HETEROCLINIC AND HOMOCLINIC CONNECTIONS OF UNSTABLE RESONANT ORBITS
    Anderson, Rodney L.
    Lo, Martin W.
    SPACEFLIGHT MECHANICS 2011, PTS I-III, 2011, 140 : 321 - +
  • [48] Homoclinic and heteroclinic orbits in the photogravitational restricted three-body problem
    K. E. Papadakis
    Astrophysics and Space Science, 2006, 302 : 67 - 82
  • [49] HOMOCLINIC AND HETEROCLINIC ORBITS AND BIFURCATIONS OF A NEW LORENZ-TYPE SYSTEM
    Li, Xianyi
    Wang, Haijun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (09): : 2695 - 2712
  • [50] Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems
    El-Dessoky, M. M.
    Yassen, M. T.
    Saleh, E.
    Aly, E. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) : 11859 - 11870