On Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System

被引:7
|
作者
Algaba, Antonio [1 ]
Fernandez-Sanchez, Fernando [2 ]
Merino, Manuel [1 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Dept Math, Fac Ciencias Expt, Huelva 21071, Spain
[2] Univ Seville, Dept Appl Math 2, ES Ingenieros, Seville 41092, Spain
来源
关键词
SILNIKOV CHAOS; CHEN CIRCUIT; EXISTENCE; ATTRACTOR;
D O I
10.1115/1.4006788
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the referenced paper, the authors use the undetermined coefficient method to analytically construct homoclinic and heteroclinic orbits in the T system. Unfortunately their method is not valid because they assume odd functions for the first component of the homoclinic and the heteroclinic orbit whereas these Shil'nikov global connections do not exhibit symmetry.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
    Van Gorder, Robert A.
    Choudhury, S. Roy
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (02):
  • [2] Shil'nikov heteroclinic orbits in a chaotic system
    Sun, Feng-Yun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (25): : 4429 - 4436
  • [3] Analysis of a Shil'nikov Type Homoclinic Bifurcation
    Xu, Yan Cong
    Liu, Xing Bo
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (05) : 901 - 910
  • [4] Shil'nikov chaos control using homoclinic orbits and the Newhouse region
    Furui, Sadataka
    Niiya, Shohei
    CHAOS SOLITONS & FRACTALS, 2007, 34 (03) : 966 - 988
  • [5] Analysis of a Shil'nikov Type Homoclinic Bifurcation
    Yan Cong XU
    Xing Bo LIU
    Acta Mathematica Sinica,English Series, 2018, 34 (05) : 901 - 910
  • [6] Analysis of a Shil’nikov Type Homoclinic Bifurcation
    Yan Cong Xu
    Xing Bo Liu
    Acta Mathematica Sinica, English Series, 2018, 34 : 901 - 910
  • [7] Shil'Nikov homoclinic orbits in the unfolding of a codimension-3 singularity
    Ibáñez, S
    Rodríguez, JA
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 975 - 977
  • [8] Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system
    Zheng, ZH
    Chen, GR
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (01) : 106 - 119
  • [9] The non-transverse Shil'nikov-Hopf bifurcation:: uncoupling of homoclinic orbits and homoclinic tangencies
    Champneys, AR
    Rodríguez-Luis, AJ
    PHYSICA D, 1999, 128 (2-4): : 130 - 158
  • [10] Homoclinic dynamics in experimental Shil'nikov attractors
    Herrero, R
    Pons, R
    Farjas, J
    Pi, F
    Orriols, G
    PHYSICAL REVIEW E, 1996, 53 (06): : 5627 - 5636