On Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System

被引:7
|
作者
Algaba, Antonio [1 ]
Fernandez-Sanchez, Fernando [2 ]
Merino, Manuel [1 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Dept Math, Fac Ciencias Expt, Huelva 21071, Spain
[2] Univ Seville, Dept Appl Math 2, ES Ingenieros, Seville 41092, Spain
来源
关键词
SILNIKOV CHAOS; CHEN CIRCUIT; EXISTENCE; ATTRACTOR;
D O I
10.1115/1.4006788
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the referenced paper, the authors use the undetermined coefficient method to analytically construct homoclinic and heteroclinic orbits in the T system. Unfortunately their method is not valid because they assume odd functions for the first component of the homoclinic and the heteroclinic orbit whereas these Shil'nikov global connections do not exhibit symmetry.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Homoclinic and Heteroclinic Orbits in Climbing Cucumber Tendrils
    Jingjing Feng
    Wei Zhang
    Cheng Liu
    Ming Guo
    Chunqiu Zhang
    Scientific Reports, 9
  • [22] Homoclinic and Heteroclinic Orbits in Climbing Cucumber Tendrils
    Feng, Jingjing
    Zhang, Wei
    Liu, Cheng
    Guo, Ming
    Zhang, Chunqiu
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [23] HOMOCLINIC AND HETEROCLINIC ORBITS FOR A SEMILINEAR PARABOLIC EQUATION
    Fila, Marek
    Yanagida, Eiji
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) : 561 - 579
  • [24] HOMOCLINIC AND HETEROCLINIC ORBITS IN THE DOUBLE SCROLL ATTRACTOR
    MEES, AI
    CHAPMAN, PB
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1987, 34 (09): : 1115 - 1120
  • [25] Mel’nikov Methods and Homoclinic Orbits in Discontinuous Systems
    Alessandro Calamai
    Matteo Franca
    Journal of Dynamics and Differential Equations, 2013, 25 : 733 - 764
  • [26] Mel'nikov Methods and Homoclinic Orbits in Discontinuous Systems
    Calamai, Alessandro
    Franca, Matteo
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (03) : 733 - 764
  • [27] Shil'nikov homoclinic dynamics and the escape from roll autorotation in an F-4 model
    Lowenberg, MH
    Champneys, AR
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1745): : 2241 - 2256
  • [28] THE BIFURCATION OF HOMOCLINIC AND PERIODIC-ORBITS FROM 2 HETEROCLINIC ORBITS
    CHOW, SN
    DENG, B
    TERMAN, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) : 179 - 204
  • [29] Computation and Continuation of Homoclinic and Heteroclinic Orbits with Arclength Parameterization
    Liu, L.
    Moore, G.
    Russell, R. D.
    SIAM Journal on Scientific Computing, 18 (01):
  • [30] HOMOCLINIC AND HETEROCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS
    RABINOWITZ, PH
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (01) : 1 - 36