Mel’nikov Methods and Homoclinic Orbits in Discontinuous Systems

被引:0
|
作者
Alessandro Calamai
Matteo Franca
机构
[1] Università Politecnica delle Marche,Dipartimento di Ingegneria Industriale e Scienze Matematiche
关键词
Homoclinic solutions; Discontinuous systems; Mel’nikov integrals; 34C23; 34C37; 37G20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a discontinuous system exhibiting a, possibly non-smooth, homoclinic trajectory. We assume that the critical point lies on the discontinuity level. We study the persistence of such a trajectory when the system is subject to a smooth non-autonomous perturbation. We use a Mel’nikov type approach and we introduce conditions which enable us to reformulate the problem in the setting of smooth systems so that we can follow the outline of the classical theory.
引用
收藏
页码:733 / 764
页数:31
相关论文
共 50 条
  • [1] Mel'nikov Methods and Homoclinic Orbits in Discontinuous Systems
    Calamai, Alessandro
    Franca, Matteo
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (03) : 733 - 764
  • [2] On the limit values of Mel'nikov functions on periodic orbits
    Glyzin, S. D.
    Kolesov, A. Yu.
    Rozov, N. Kh.
    DIFFERENTIAL EQUATIONS, 2007, 43 (02) : 180 - 195
  • [3] On the limit values of Mel’nikov functions on periodic orbits
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Differential Equations, 2007, 43 : 180 - 195
  • [4] Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems
    Battelli, F.
    Feckan, M.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (22) : 1962 - 1975
  • [5] On Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2013, 8 (02):
  • [6] Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
    Van Gorder, Robert A.
    Choudhury, S. Roy
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (02):
  • [7] SIL'NIKOV HOMOCLINIC ORBITS IN TWO CLASSES OF 3D AUTONOMOUS NONLINEAR SYSTEMS
    Chen, Baoying
    Zhou, Tianshou
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (20): : 2697 - 2712
  • [8] Homoclinic intersections and Mel'nikov method for perturbed sine-Gordon equation
    Rothos, VM
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (03): : 279 - 302
  • [9] Homoclinic intersections and Mel'nikov method for perturbed sine-Gordon equation
    Rothos, Vassilios M.
    Dynamical Systems, 2001, 16 (03) : 279 - 302
  • [10] Shil'nikov chaos control using homoclinic orbits and the Newhouse region
    Furui, Sadataka
    Niiya, Shohei
    CHAOS SOLITONS & FRACTALS, 2007, 34 (03) : 966 - 988