Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin-Voigt damping

被引:3
|
作者
Hong, Gimyong [1 ]
Hong, Hakho [2 ]
机构
[1] Univ Sci, Fac Math, Pyongyang, North Korea
[2] State Acad Sci, Inst Math, Pyongyang, North Korea
关键词
Transmission problem; Kirchhoff plate; Wave equation; Kelvin– Voigt damping; Energy decay; Carleman estimate;
D O I
10.1007/s00028-021-00682-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the stabilization for the Kirchhoff plate and equations connected by transmission conditions. We show that the energy of the transmission system is stable with logarithmic decay rate when feedback control acts on the small part of the plate as a viscoelastic material with Kelvin-Voigt constitutive relation. The proof is based on a new resolvent estimate by using some careful analysis for Kirchhoff plate-wave transmission system.
引用
收藏
页码:2239 / 2264
页数:26
相关论文
共 50 条
  • [41] Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping
    Hassine, Fathi
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (10) : 1933 - 1950
  • [42] An inverse problem for Kelvin-Voigt equations perturbed by isotropic diffusion and damping
    Khompysh, Khonatbek
    Kenzhebai, Khanat
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3817 - 3842
  • [43] Stabilization for the Wave Equation with Singular Kelvin–Voigt Damping
    Kaïs Ammari
    Fathi Hassine
    Luc Robbiano
    Archive for Rational Mechanics and Analysis, 2020, 236 : 577 - 601
  • [44] Stability for the Timoshenko Beam System with Local Kelvin-Voigt Damping
    Hong Liang ZHAO
    Chun Guo ZHANG
    Acta Mathematica Sinica(English Series), 2005, 21 (03) : 655 - 666
  • [45] A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping
    Raposo, C. A.
    Bastos, W. D.
    Avila, J. A. J.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011, 5 (01): : 17 - 28
  • [46] Stability for the Timoshenko beam system with local Kelvin-Voigt damping
    Zhao, HL
    Liu, KS
    Zhang, CG
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (03) : 655 - 666
  • [47] Thermal Timoshenko beam system with suspenders and Kelvin-Voigt damping
    Mukiawa, Soh Edwin
    Khan, Yasir
    Al Sulaimani, Hamdan
    Omaba, McSylvester Ejighikeme
    Enyi, Cyril Dennis
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [48] Stability of an abstract-wave equation with delay and a Kelvin-Voigt damping
    Ammari, Kais
    Nicaise, Serge
    Pignotti, Cristina
    ASYMPTOTIC ANALYSIS, 2015, 95 (1-2) : 21 - 38
  • [49] Decay for the Kelvin-Voigt damped wave equation: Piecewise smooth damping
    Burq, Nicolas
    Sun, Chenmin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (01): : 446 - 483
  • [50] Longtime behavior of multidimensional wave equation with local Kelvin-Voigt damping
    Han, Zhong-Jie
    Yu, Kai
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (06):