Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin-Voigt damping

被引:3
|
作者
Hong, Gimyong [1 ]
Hong, Hakho [2 ]
机构
[1] Univ Sci, Fac Math, Pyongyang, North Korea
[2] State Acad Sci, Inst Math, Pyongyang, North Korea
关键词
Transmission problem; Kirchhoff plate; Wave equation; Kelvin– Voigt damping; Energy decay; Carleman estimate;
D O I
10.1007/s00028-021-00682-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the stabilization for the Kirchhoff plate and equations connected by transmission conditions. We show that the energy of the transmission system is stable with logarithmic decay rate when feedback control acts on the small part of the plate as a viscoelastic material with Kelvin-Voigt constitutive relation. The proof is based on a new resolvent estimate by using some careful analysis for Kirchhoff plate-wave transmission system.
引用
收藏
页码:2239 / 2264
页数:26
相关论文
共 50 条
  • [21] STABILITY OF THE WAVE EQUATION WITH LOCALIZED KELVIN-VOIGT DAMPING AND BOUNDARY DELAY FEEDBACK
    Nicaise, Serge
    Pignotti, Cristina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (03): : 791 - 813
  • [22] STABILIZATION OF THE WAVE EQUATION WITH LOCALIZED COMPENSATING FRICTIONAL AND KELVIN-VOIGT DISSIPATING MECHANISMS
    Cavalcanti, Marcelo
    Cavalcanti, Valeria Domingos
    Tebou, Louis
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [23] Extremum Seeking for a Class of Wave Partial Differential Equations With Kelvin-Voigt Damping
    Silva, Paulo Cesar Souza
    Pellanda, Paulo Cesar
    Oliveira, Tiago Roux
    de Andrade, Gustavo Artur
    Krstic, Miroslav
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 43 - 48
  • [24] Frictional versus Kelvin-Voigt damping in a transmission problem
    Oquendo, Higidio Portillo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7026 - 7032
  • [25] Extremum Seeking for a Class of Wave Partial Differential Equations with Kelvin-Voigt Damping
    Silva, Paulo Cesar Souza
    Pellanda, Paulo Cesar
    Oliveira, Tiago Roux
    De Andrade, Gustavo Artur
    Krstic, Miroslav
    IEEE Control Systems Letters, 2024, 8 : 43 - 48
  • [26] Logarithmic Decay of Wave Equation with Kelvin-Voigt Damping
    Robbiano, Luc
    Zhang, Qiong
    MATHEMATICS, 2020, 8 (05)
  • [27] Spectral analysis of a wave equation with Kelvin-Voigt damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04): : 323 - 342
  • [28] Frequency Analysis of a Wave Equation with Kelvin-Voigt Damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4471 - 4476
  • [29] Uniform Stabilization for the Semi-linear Wave Equation with Nonlinear Kelvin-Voigt Damping
    Ammari, Kais
    Cavalcanti, Marcelo M.
    Mansouri, Sabeur
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02):
  • [30] Stability of a Timoshenko system with local Kelvin-Voigt damping
    Tian, Xinhong
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):