Convergence analysis of the modified adaptive extended Kalman filter for the parameter estimation of a brushless DC motor

被引:19
|
作者
Ding, Jie [1 ]
Chen, Lijuan [1 ]
Cao, Zhengxin [1 ]
Guo, Honghao [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Jiangsu Engn Lab IOT Intelligent Robots, Sch Automat & Artificial Intelligence, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
back electromotive force; brushless DC motor; convergence analysis; nonlinear Kalman filter; ESTIMATION ALGORITHM; NONLINEAR-SYSTEMS; BILINEAR-SYSTEMS; DIRECT TORQUE; IDENTIFICATION; DRIVE;
D O I
10.1002/rnc.5706
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article concentrates on the parameter estimation of brushless DC motor, where the stator current and winding back electromotive force are taken as the motor states, while the stator resistance and inductance are taken into consideration and augmented into the state vector. Based on this augmented model, a modified adaptive extended Kalman filter is proposed which updates the process noise covariance matrix in real time with the current input-output data, and takes the state estimates by the traditional extended Kalman filter as one-step estimation for the calculation of the covariance matrix. The convergence analysis is given to verify the theoretical results. Finally, the simulation results show that the proposed algorithm can effectively improve the estimation accuracy.
引用
收藏
页码:7606 / 7620
页数:15
相关论文
共 50 条
  • [31] On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter
    Sim, Hyun-Woo
    Lee, June-Seok
    Lee, Kyo-Beum
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2014, 9 (02) : 600 - 608
  • [32] Aerodynamic parameter estimation using adaptive unscented Kalman filter
    Majeed, M.
    Kar, Indra Narayan
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2013, 85 (04): : 267 - 279
  • [33] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Loïc J. Azzalini
    David Crompton
    Gabriele M. T. D’Eleuterio
    Frances Skinner
    Milad Lankarany
    Journal of Computational Neuroscience, 2023, 51 : 223 - 237
  • [34] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Azzalini, Loic J.
    Crompton, David
    D'Eleuterio, Gabriele M. T.
    Skinner, Frances
    Lankarany, Milad
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 (02) : 223 - 237
  • [35] Projectile trajectory estimation: performance analysis of an Extended Kalman Filter and an Imperfect Invariant Extended Kalman Filter
    Roux, Alicia
    Changey, Sebastien
    Weber, Jonathan
    Lauffenburger, Jean-Philippe
    2021 9TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC'21), 2021, : 274 - 281
  • [36] Parameter estimation of an SMA actuator model using an extended Kalman filter
    Soltani, M.
    Bozorg, M.
    Zakerzadeh, M. R.
    MECHATRONICS, 2018, 50 : 148 - 159
  • [37] Walking parameter estimation of human leg using extended Kalman filter
    Navaneethan, S.
    Swetha, U.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 1541 - 1552
  • [38] ONLINE PARAMETER AND STATE ESTIMATION OF CONTINUOUS CULTIVATION BY EXTENDED KALMAN FILTER
    NAHLIK, J
    BURIANEC, Z
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1988, 28 (02) : 128 - 134
  • [39] Parameter Estimation in Systems Biology Models by Using Extended Kalman Filter
    Capinski, Michal
    Polanski, Andrzej
    MAN-MACHINE INTERACTIONS 4, ICMMI 2015, 2016, 391 : 195 - 204
  • [40] FDI by extended Kalman filter parameter estimation for an industrial actuator benchmark
    Univ of Cincinnati, Cincinnati, United States
    Control Eng Pract, 12 (1769-1774):