Convergence analysis of the modified adaptive extended Kalman filter for the parameter estimation of a brushless DC motor

被引:19
|
作者
Ding, Jie [1 ]
Chen, Lijuan [1 ]
Cao, Zhengxin [1 ]
Guo, Honghao [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Jiangsu Engn Lab IOT Intelligent Robots, Sch Automat & Artificial Intelligence, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
back electromotive force; brushless DC motor; convergence analysis; nonlinear Kalman filter; ESTIMATION ALGORITHM; NONLINEAR-SYSTEMS; BILINEAR-SYSTEMS; DIRECT TORQUE; IDENTIFICATION; DRIVE;
D O I
10.1002/rnc.5706
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article concentrates on the parameter estimation of brushless DC motor, where the stator current and winding back electromotive force are taken as the motor states, while the stator resistance and inductance are taken into consideration and augmented into the state vector. Based on this augmented model, a modified adaptive extended Kalman filter is proposed which updates the process noise covariance matrix in real time with the current input-output data, and takes the state estimates by the traditional extended Kalman filter as one-step estimation for the calculation of the covariance matrix. The convergence analysis is given to verify the theoretical results. Finally, the simulation results show that the proposed algorithm can effectively improve the estimation accuracy.
引用
收藏
页码:7606 / 7620
页数:15
相关论文
共 50 条
  • [21] Constrained Dynamic Parameter Estimation using the Extended Kalman Filter
    Joukov, Vladimir
    Bonnet, Vincent
    Venture, Gentiane
    Kulic, Dana
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3654 - 3659
  • [22] An Energy Balance Model Parameter Estimation with an Extended Kalman Filter
    Manurung, Auralius
    Kristiana, Lisa
    Aryanta, Dwi
    IFAC PAPERSONLINE, 2021, 54 (20): : 735 - 740
  • [23] Dual extended Kalman filter for vehicle state and parameter estimation
    Wenzel, TA
    Burnham, KJ
    Blundell, MV
    Williams, RA
    VEHICLE SYSTEM DYNAMICS, 2006, 44 (02) : 153 - 171
  • [24] LEQG/LTR controller design with extended Kalman filter for sensorless brushless DC driver
    Lin, JM
    Lin, MC
    Wang, HP
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (42) : 5481 - 5494
  • [25] Convergence analysis for extended Kalman filter based SLAM
    Huang, Shoudong
    Dissanayake, Gamini
    2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 412 - +
  • [26] Convergence analysis of the extended Kalman filter used in the ultrasonic time-of-flight estimation
    Gouveia, R.
    Villanueva, J.
    Santos, F.
    Silva, J.
    2017 JOINT IMEKO TC1-TC7-TC13 SYMPOSIUM: MEASUREMENT SCIENCE CHALLENGES IN NATURAL AND SOCIAL SCIENCES, 2018, 1044
  • [27] Speed estimation for an induction motor using the extended Kalman filter
    Velázquez, SC
    Palomares, RA
    Segura, AN
    14TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS, AND COMPUTERS, PROCEEDINGS, 2004, : 63 - 68
  • [28] Synchronous Reluctance Motor Parameter and State Estimation Using Extended Kalman Filter and Current Derivative Measurement
    Mynar, Zbynek
    Vaclavek, Pavel
    Blaha, Petr
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (03) : 1972 - 1981
  • [29] Adaptive Frequency Estimation of Distorted Power System Signals Using Modified Extended Kalman Filter
    Uzunoglu, Cengiz Polat
    Cekli, Serap
    Ugur, Mukden
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2011, 24 (01): : 85 - 89
  • [30] Identification of induction motor parameter using an Extended Kalman Filter.
    Jaramillo, R
    Alvarez, R
    Cárdenas, V
    Núñez, C
    2004 1st International Conference on Electrical and Electronics Engineering (ICEEE), 2004, : 584 - 588