Rough bilinear fractional integrals with variable kernels

被引:11
|
作者
Chen, Jiecheng [1 ]
Fan, Dashan [2 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Wisconsin, Dept Math, Milwaukee, WI 53217 USA
基金
中国国家自然科学基金;
关键词
Bilinear operator; multilinear fractional integral; variable kernel; WEIGHTED NORM INEQUALITIES; OPERATORS;
D O I
10.1007/s11464-010-0061-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the rough bilinear fractional integral (B) over tilde (Omega,alpha)(f, g)(x) = integral(Rn) f(x + y)g(x - y) Omega(x, y')/vertical bar y vertical bar(n-alpha) dy, where 0 < alpha < n, Omega is homogeneous of degree zero on the y variable and satisfies Omega is an element of L(infinity)(R(n)) x L(s)(S(n-1)) for some s >= 1, and S(n-1) denotes the unit sphere of R(n). By assuming size conditions on Omega, we obtain several boundedness properties of (B) over tilde (Omega,alpha)(f, g): (B) over tilde (Omega,alpha) : L(p1) x L(p2) -> L(p), where 1/p = 1/p1 + 1/p2 - alpha/n. Our result extends a main theorem of Y. Ding and C. Lin [Math. Nachr., 2002, 246-247: 47-52].
引用
收藏
页码:369 / 378
页数:10
相关论文
共 50 条