Rough bilinear fractional integrals with variable kernels

被引:11
|
作者
Chen, Jiecheng [1 ]
Fan, Dashan [2 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Wisconsin, Dept Math, Milwaukee, WI 53217 USA
基金
中国国家自然科学基金;
关键词
Bilinear operator; multilinear fractional integral; variable kernel; WEIGHTED NORM INEQUALITIES; OPERATORS;
D O I
10.1007/s11464-010-0061-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the rough bilinear fractional integral (B) over tilde (Omega,alpha)(f, g)(x) = integral(Rn) f(x + y)g(x - y) Omega(x, y')/vertical bar y vertical bar(n-alpha) dy, where 0 < alpha < n, Omega is homogeneous of degree zero on the y variable and satisfies Omega is an element of L(infinity)(R(n)) x L(s)(S(n-1)) for some s >= 1, and S(n-1) denotes the unit sphere of R(n). By assuming size conditions on Omega, we obtain several boundedness properties of (B) over tilde (Omega,alpha)(f, g): (B) over tilde (Omega,alpha) : L(p1) x L(p2) -> L(p), where 1/p = 1/p1 + 1/p2 - alpha/n. Our result extends a main theorem of Y. Ding and C. Lin [Math. Nachr., 2002, 246-247: 47-52].
引用
收藏
页码:369 / 378
页数:10
相关论文
共 50 条
  • [21] An extension of Marcinkiewicz integrals with rough kernels
    Wu, Huoxiong
    Wu, Lin
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (03) : 789 - 808
  • [22] Boundedness of singular integrals of variable rough Calderon-Zygmund kernels along surfaces
    Tang, L
    Yang, DC
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2002, 43 (04) : 488 - 502
  • [23] Improved estimates for bilinear rough singular integrals
    He, Danqing
    Park, Bae Jun
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1951 - 1978
  • [24] Improved estimates for bilinear rough singular integrals
    Danqing He
    Bae Jun Park
    Mathematische Annalen, 2023, 386 : 1951 - 1978
  • [25] A note on maximal singular integrals with rough kernels
    Xiao Zhang
    Feng Liu
    Journal of Inequalities and Applications, 2020
  • [26] A remark on multilinear singular integrals with rough kernels
    Pan, YB
    Wu, Q
    Yang, DC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 253 (01) : 310 - 321
  • [27] Necessary and sufficient conditions for boundedness of multilinear fractional integrals with rough kernels on Morrey type spaces
    Yanlong Shi
    Zengyan Si
    Xiangxing Tao
    Yafeng Shi
    Journal of Inequalities and Applications, 2016
  • [28] Necessary and sufficient conditions for boundedness of multilinear fractional integrals with rough kernels on Morrey type spaces
    Shi, Yanlong
    Si, Zengyan
    Tao, Xiangxing
    Shi, Yafeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 19
  • [29] A note on maximal singular integrals with rough kernels
    Zhang, Xiao
    Liu, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [30] On multilinear oscillatory singular integrals with rough kernels
    Wu, HX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (02) : 479 - 494