ON THE CONTROLLABILITY OF A COUPLED SYSTEM OF TWO KORTEWEG-DE VRIES EQUATIONS

被引:20
|
作者
Micu, Sorin [1 ]
Ortega, Jaime H. [2 ,3 ]
Pazoto, Ademir F. [4 ]
机构
[1] Univ Craiova, Fac Matemat Informat, Craiova 200585, Romania
[2] Univ Chile, Dept Ingn Matemat, UMI 2807, CNRS, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento, UMI 2807, CNRS, Santiago, Chile
[4] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
关键词
Korteweg-de Vries equation and system; boundary control; observation; local controllability; EXACT BOUNDARY CONTROLLABILITY; STABILIZABILITY; STABILIZATION;
D O I
10.1142/S0219199709003600
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves the local exact boundary controllability property of a nonlinear system of two coupled Korteweg-de Vries equations which models the interactions of weakly nonlinear gravity waves (see [10]). Following the method in [24], which combines the analysis of the linearized system and the Banach's fixed point theorem, the controllability problem is reduced to prove a nonstandard unique continuation property of the eigenfunctions of the corresponding differential operator.
引用
收藏
页码:799 / 827
页数:29
相关论文
共 50 条
  • [31] On the Hamiltonian decomposition of the Boussinesq equations in a pair of coupled Korteweg-de Vries equations
    Mattioli, F
    WAVE MOTION, 1998, 28 (03) : 283 - 296
  • [32] A strange recursion operator for a new integrable system of coupled Korteweg-de Vries equations
    Karasu, A
    Karasu, A
    Sakovich, SY
    ACTA APPLICANDAE MATHEMATICAE, 2004, 83 (1-2) : 85 - 94
  • [33] A higher order system of some coupled nonlinear Schrodinger and Korteweg-de Vries equations
    Alvarez-Caudevilla, P.
    Colorado, Eduardo
    Fabelo, Rasiel
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [34] CONTROLLABILITY OF THE KORTEWEG-DE VRIES-BURGERS EQUATION
    Zhou, Hang
    Han, Yuecai
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (01): : 207 - 215
  • [35] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations
    Khader, M. M.
    Saad, Khaled M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (01) : 67 - 77
  • [36] SOLITONS, KINKS AND SINGULAR SOLUTIONS OF COUPLED KORTEWEG-DE VRIES EQUATIONS
    Ahmed, Bouthina S.
    Biswas, Anjan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2013, 14 (02): : 111 - 120
  • [37] Soliton states of n-coupled Korteweg-de Vries equations
    Triki, H
    El Akrmi, A
    Rabia, MK
    OPTICS COMMUNICATIONS, 2004, 232 (1-6) : 429 - 437
  • [38] Existence of travelling-wave solutions to a coupled system of Korteweg-de Vries equations
    Bhattarai, Santosh
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 127 : 182 - 195
  • [39] New periodic wave and soliton solutions for system of coupled Korteweg-de Vries equations
    Rady, A. S. Abdel
    Khater, A. H.
    Osman, E. S.
    Khalfallah, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 406 - 414
  • [40] ON THE APPROXIMATE SOLUTIONS FOR A SYSTEM OF COUPLED KORTEWEG-DE VRIES EQUATIONS WITH LOCAL FRACTIONAL DERIVATIVE
    Jafari, Hossein
    Jassim, Hassan Kamil
    Baleanu, Dumitru
    Chu, Yu-ming
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (05)