Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations

被引:21
|
作者
Khader, M. M. [1 ,2 ]
Saad, Khaled M. [3 ,4 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
[3] Najran Univ, Coll Arts & Sci, Dept Math, Najran, Saudi Arabia
[4] Taiz Univ, Fac Appl Sci, Dept Math, Taizi, Yemen
关键词
FKdVE; FKdVBE; FBE; FDM; Chebyshev polynomials; Spectral collocation method; TRAVELING-WAVE SOLUTIONS; DIFFUSION; SCHEME; MODEL;
D O I
10.1007/s40010-020-00656-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we present an accurate numerical method to compute the approximate solutions of the Korteweg-de Vries, Korteweg-de Vries-Burger's and Burger's equations with Liouville-Caputo fractional space derivatives, respectively. We implement the spectral collocation method based on the shifted Chebyshev polynomials. The method reduces each model to a set of ODEs which is solved by using the finite difference method. The results obtained by the proposed method are compared with exact solutions, the q-homotopy analysis transform method and the variational iteration method. The efficiency and the accuracy of the results were ascertained by comparing the approximate solution with the exact solution in the case of classical models and evaluating the residual error function in the case of fractional models.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 50 条
  • [1] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations
    M. M. Khader
    Khaled M. Saad
    [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 67 - 77
  • [2] KORTEWEG-DE VRIES-BURGERS EQUATION
    CANOSA, J
    GAZDAG, J
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (04) : 393 - 403
  • [3] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    [J]. Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [4] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47
  • [5] Asymptotics for the Korteweg-de Vries-Burgers Equation
    Nakao HAYASHI
    Pavel I.NAUMKIN
    [J]. Acta Mathematica Sinica,English Series, 2006, 22 (05) : 1441 - 1456
  • [6] Asymptotics for the Korteweg-de Vries-Burgers equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) : 1441 - 1456
  • [7] Korteweg-de Vries-Burgers system in RN
    Dlotko, Tomasz
    Kania, Maria B.
    Ma, Shan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 853 - 872
  • [8] CONTROLLABILITY OF THE KORTEWEG-DE VRIES-BURGERS EQUATION
    Zhou, Hang
    Han, Yuecai
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (01): : 207 - 215
  • [9] Boundary control of stochastic Korteweg-de Vries-Burgers equations
    Liang, Shuang
    Wu, Kai-Ning
    [J]. NONLINEAR DYNAMICS, 2022, 108 (04) : 4093 - 4102
  • [10] Boundary control of stochastic Korteweg-de Vries-Burgers equations
    Shuang Liang
    Kai-Ning Wu
    [J]. Nonlinear Dynamics, 2022, 108 : 4093 - 4102