Asymptotics for the Korteweg-de Vries-Burgers equation

被引:17
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I.
机构
[1] Osaka Univ, Dept Math, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Michoacan 58089, Mexico
基金
日本学术振兴会;
关键词
Korteweg-de Vries-Burgers equation; asymptotics for large time; large initial data;
D O I
10.1007/s10114-005-0677-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study large time asymptotics of solutions to the Korteweg-de Vries-Burgers equation u(t) + uu(x) - u(xxx) = 0, x is an element of R, t > 0. We are interested in the large time asymptotics for the case when the initial data have an arbitrary size. We prove that if the initial data u(o) is an element of H(s) (R) boolean AND L(1) (R), where s > -1/2, then there exists a unique solution a (t, x) is an element of C(infinity) ((0, infinity); H(infinity) (R)) to the Cauchy problem for the Korteweg-de Vries-Burgers equation, which has asymptotics u (t) = t(-1/2) fM ((center dot)t(-1/2)) + o(t(-1/2)), where gamma is an element of (0, 1/2).
引用
收藏
页码:1441 / 1456
页数:16
相关论文
共 50 条