The scINSIGHT Package for Integrating Single-Cell RNA-Seq Data from Different Biological Conditions

被引:0
|
作者
Qian, Kun [1 ]
Fu, Shiwei [2 ,3 ]
Li, Hongwei [1 ]
Li, Wei Vivian [2 ,3 ,4 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan, Peoples R China
[2] Rutgers State Univ, Rutgers Sch Publ Hlth, Dept Biostat & Epidemiol, Piscataway, NJ USA
[3] Univ Calif Riverside, Dept Stat, Riverside, CA USA
[4] Univ Calif Riverside, Dept Stat, 900 Univ Ave,Olmsted Hall 1337, Riverside, CA 92591 USA
基金
美国国家卫生研究院;
关键词
clustering; data integration; non-negative matrix factorization; scRNA-seq;
D O I
10.1089/cmb.2022.0244
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Data integration is a critical step in the analysis of multiple single-cell RNA sequencing samples to account for heterogeneity due to both biological and technical variability. scINSIGHT is a new integration method for single-cell gene expression data, and can effectively use the information of biological condition to improve the integration of multiple single-cell samples. scINSIGHT is based on a novel non-negative matrix factorization model that learns common and condition-specific gene modules in samples from different biological or experimental conditions. Using these gene modules, scINSIGHT can further identify cellular identities and active biological processes in different cell types or conditions. Here we introduce the installation and main functionality of the scINSIGHT R package, including how to preprocess the data, apply the scINSIGHT algorithm, and analyze the output.
引用
收藏
页码:1233 / 1236
页数:4
相关论文
共 50 条
  • [31] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [32] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [33] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [34] SCell: integrated analysis of single-cell RNA-seq data
    Diaz, Aaron
    Liu, Siyuan J.
    Sandoval, Carmen
    Pollen, Alex
    Nowakowski, Tom J.
    Lim, Daniel A.
    Kriegstein, Arnold
    BIOINFORMATICS, 2016, 32 (14) : 2219 - 2220
  • [35] SCnorm: robust normalization of single-cell RNA-seq data
    Rhonda Bacher
    Li-Fang Chu
    Ning Leng
    Audrey P Gasch
    James A Thomson
    Ron M Stewart
    Michael Newton
    Christina Kendziorski
    Nature Methods, 2017, 14 : 584 - 586
  • [36] Cytocipher determines significantly different populations of cells in single-cell RNA-seq data
    Balderson, Brad
    Piper, Michael
    Thor, Stefan
    Boden, Mikael
    BIOINFORMATICS, 2023, 39 (07)
  • [37] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    McDavid, Andrew
    Finak, Greg
    Gottardo, Raphael
    NATURE BIOTECHNOLOGY, 2016, 34 (06) : 591 - 593
  • [38] Latent periodic process inference from single-cell RNA-seq data
    Liang, Shaoheng
    Wang, Fang
    Han, Jincheng
    Chen, Ken
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [39] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    Andrew McDavid
    Greg Finak
    Raphael Gottardo
    Nature Biotechnology, 2016, 34 : 591 - 593
  • [40] Exploring Additional Valuable Information From Single-Cell RNA-Seq Data
    Li, Yunjin
    Xu, Qiyue
    Wu, Duojiao
    Chen, Geng
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8